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Abstract

Chapter 1 presents the first published measurements of Sr-isotope variability in olivine-
hosted melt inclusions. Melt inclusions in just two Samoan basalt hand samples exhibit most of
the total Sr-isotope variability observed in Samoan lavas. Chapter 3 deals with the largest
possible scales of mantle heterogeneity, and presents the highest magmatic *He/*He (33.8 times
atmospheric) discovered in Samoa and the southern hemisphere. Along with Samoa, the highest
*He/*He sample from each southern hemisphere high *He/*He hotspot exhibits lower '“*Nd/'"*Nd
ratios than their counterparts in the northern hemisphere. Chapter 2 presents geochemical data
for a suite of unusually enriched Samoan lavas. These highly enriched Samoan lavas have the
highest *’Sr/**Sr values (0.72163) measured in oceanic hotspot lavas to date, and along with trace
element ratios (low Ce/Pb and Nb/U ratios), provide a strong case for ancient recycled sediment
in the Samoan mantle. Chapter 4 explores whether the eclogitic and peridotitic portions of
ancient subducted oceanic plates can explain the anomalous titanium, tantalum and niobium
(TITAN) enrichment in high *He/*He ocean island basalts (OIBs). The peridotitic portion of
ancient subducted plates can contribute high *He/*He and, after processing in subduction zones, a
refractory, rutile-bearing eclogite may contribute the positive TITAN anomalies.



Introduction

Unlike the earth’s crust, it is difficult to sample the mantle directly. However,
there are a few isolated (and geographically limited) instances where we can observe the
uppermost regions of the mantle. Ophiolites—portions of oceanic plates that have been
uplifted and emplaced (obducted) onto the edge of continents—expose the uppermost
regions of the mantle on the surface (Dick, 1976). Similarly, at certain, ultra-slow
spreading mid-ocean ridges, mantle peridotites are emplaced on the surface (Dick et al.,
2003), where they can be recovered with deep submersibles or dredging operations.
Additionally, ultramafic xenoliths, which are pieces of the upper mantle entrained in
upwelling magmas, allow direct inspection of the composition of the upper mantle (but
unlike ophiolites and abyssal peridotites recovered by submersibles, ultramafic xenoliths
provide little spatial context for study of the mantle). Thus, except for these few rare
instances, we cannot examine the composition of the mantle directly: The deepest hole
ever drilled, only ~12.3 km deep, took 22 years and untold Soviet resources to complete--
and got no where near mantle depths (unfortunately, the drill site was atop thick
continental crust). While robots rove the surface of a planet, Mars, that is > 56,000,000
km distant, we have not directly observed our own planet at depths >12 km!

Nonetheless, there are indirect methods for evaluating the composition of the
deeper earth. Mantle geochemists often use lavas erupted on the surface as “windows” to
the composition of the mantle below. Hotspot lavas erupted in oceanic settings, or
oceanic island basalts (OIBs), are formed by partially melting and upwelling, solid
mantle. During melting, several radiogenic isotope systems and a number of trace
element ratios remain unfractionated (or little fractionated, in the case of trace elements
with similar compatibilities, at least when the partition coefficients are much less than the
degree of melting) from the original, unmelted mantle. OIBs exhibit a great deal of
isotopic and trace element heterogeneity, indicating that the mantle from which they were
derived is also quite heterogeneous (Zindler and Hart, 1986). This fundamental

observation leads to some of the most important questions in the field of mantle
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geochemistry: How did the mantle become heterogeneous? At what scale lengths do the
heterogeneities exist? How long do the heterogeneities survive?

One common paradigm in mantle geochemistry assumes that oceanic plates,
which form by melting and depleting the upper mantle at mid-ocean ridges, are subducted
back into the mantle from which they formed. Covered with a veneer of
oceanic/continental sediment, subducted oceanic plates inject sediment, oceanic crust and
depleted peridotitic mantle lithosphere into the mantle (Hofmann and White, 1982; White
and Hofmann, 1982). In this way, mantle heterogeneities are born. Following storage in
the mantle, subducted plates and sediment are thought to be sampled by upwelling
plumes that melt and erupt lavas on the surface. However, a counteracting mechanism—
chaotic mantle convection—stretches, thins, mixes and stirs, and thus homogenizes (or at
least greatly attenuates) mantle heterogeneities on long timescales.

In Chapter 1, isotopic heterogeneities are explored at very short lengthscales in
olivine-hosted melt inclusions in oceanic OIBs. Using a laser ablation system coupled to
a MC-ICPMS (multi-collector inductively coupled plasma mass spectrometer), *’Sr/**Sr
was measured in olivine-hosted melt inclusions recovered from Samoan basalts.
Complementing the pioneering work on Pb-isotopes in olivine-hosted melt inclusions
from two Polynesian hotspots (Saal et al., 1998), significant Sr-isotope heterogeneity was
also observed in the melt inclusions from individual Samoan basalt hand samples. Melt
inclusions in one Samoan lava exhibit a range of *’Sr/**Sr from 0.70686 to 0.70926. The
1sotopic diversity hosted in the melt inclusions from a single lava indicate that the size of
the melting zone beneath a Samoan volcano can be larger than the lengthscales of mantle
heterogeneities in the mantle upwelling beneath the hotspot. Furthermore, none of the 41
melt inclusions analyzed exhibit *’Sr/*Sr ratios lower than the least radiogenic whole-
rock basalts in Samoa (*'Sr/**Sr =0.7044). This ¥'Sr/**Sr data, combined with trace
element data on the same melt inclusions, provide strong evidence against assimilation of
oceanic crust as the source of the isotopic diversity in the melt inclusions.

Chapter 3 also deals with lengthscales of mantle heterogeneity, but by comparison
to Chapter 1, Chapter 3 considers the largest possible lengthscales of heterogeneity in the
Earth’s mantle. The high SHe/*He (or FOZO, Focus Zone; Hart et al., 1992) mantle
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reservoir, a domain that is considered to be one of the oldest (and deepest?) reservoirs in
the mantle, is the focus of chapter 3. In this chapter, the highest magmatic *He/*He ratios
ever recorded in a southern hemisphere lava (33.8 times atmospheric) are reported in
samples from the Samoan island of Ofu. These new measurements from Ofu Island place
Samoa in the same category of high *He/*He hotspots as Hawaii, Iceland and the
Galapagos. Along with Samoa, the highest *He/*He sample from each southern
hemisphere high 3He/*He hotspot exhibits lower '**Nd/"**Nd ratios than their counterparts
in the northern hemisphere (excluding lavas erupted in continental, back-arc, and
submarine ridge environments). The observation of a large-scale isotopic enrichment in
the FOZO-A (austral) high ‘He/*He mantle compared to the FOZO-B (boreal) high
’He/*He mantle is similar to the DUPAL anomaly, a globe-encircling feature of isotopic
enrichment observed primarily in southern hemisphere ocean island basalts. The possible
existence of hemispheric-scale heterogeneity in one of the oldest reservoirs in the mantle
has important implications for mantle dynamics. It suggests that regions of the (lower?)
mantle have escaped the rapid convection motions that dominate the upper mantle.
However, the origin of the hemispheric-scale heterogeneity in the FOZO (and DUPAL)
reservoir is unknown.

Nonetheless, having defined the variability that exists in the high *He/*He mantle,
Chapter 3 also explores whether or not the FOZO reservoirs are truly depleted, as is
commonly suggested (Hart et al., 1992), or whether they have been re-enriched. The
recent discovery of superchondritic '**Nd/'**Nd ratios in terrestrial (Boyet and Carlson,
2005), martian and lunar (Caro et al., 2007) suggests that bulk silicate earth (BSE) may
have superchondritic Sm/Nd ratios ("*"Sm/"**Nd>0.209, the minimum ratio necessary to
generate the terrestrial mantle 2N d/"**Nd anomaly relative to chondrites), and that the
earth has a minimum '"*Nd/'*Nd of 0.51304. If this is true, then the FOZO reservoirs
are actually enriched relative to BSE.

Chapter 2 explores a common paradigm in mantle geochemistry, that subduction
of marine/continental sediments can generate geochemically enriched mantle domains
that can be sampled by mantle upwellings. In this chapter, remarkably high *’Sr/*Sr

ratios are reported in submarine lavas recovered from the flanks of the Samoan island of
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Savai’i. These Savai’i lavas exhibit the highest *’Sr/**Sr ratios reported for ocean island
basalts to date. The isotope and trace element data are consistent with the presence of a
recycled sediment component (with a composition similar to the upper continental crust)
in the Samoan mantle. Importantly, Pb-isotopes in the most enriched Samoan lavas
preclude contamination by modern-marine sediment. The ultra-enriched Samoan lavas
have most certainly been “contaminated” by sediment, but the sediment is of an ancient
(>> 200 Ma) origin and has been recycled into the Samoan mantle source. In summary,
Chapter 3 provides the strongest evidence yet that the sediment that goes down in
subduction zones does come back up in OIBs. However, given the large mass of
sediment that has been subducted into the mantle over geologic history, it is still a
mystery why clear signatures of sediment recycling are so rare in OIBs (Hofmann, 1997).
Chapter 4 reports evidence for radiogenic '*’Os/'**Os and enrichment in
Titanium, Tantalum and Niobium (TITAN) in high *He/*He lavas globally. To explain
these observations, the dominant paradigm for the formation of mantle heterogeneity is
applied to the high *He/*He reservoir: Can the subduction of oceanic plates (crust and
peridotite) generate the geochemical signatures associated with the high *He/*He
reservoir? Radiogenic '*’Os/'®*0s and TITAN enrichment are both geochemical
signatures that are associated with recycled eclogite, suggesting that the high *He/*He
lavas were derived from a mantle source hosting a recycled slab component However,
eclogites are quantitatively degassed in subduction zones and do not have intrinsically
high *He/*He. None-the-less, the peridotitic portion of recycled slabs has been suggested
to preserve high *He/*He over time (e.g., Parman et al., 2005). The eclogitic and
peridotitic portions of subducted plates are intimately associated in space and time, a
geometry that is conducive to later mixing in the mantle. Thus, together, the two
lithologies can provide the “raw materials” for the formation of the high *He/*He mantle.
Importantly, the TITAN enrichment in high *He/*He mantle sampled by oceanic
hotspot lavas may provide a clue about the location of the “missing” TITAN in the earth.
Shallow geochemical reservoirs in the earth—continental crust and the depleted mid-
ocean ridge basalt mantle (DMM)—have a shortage of the element Ti, Ta and Nb
(TITAN) (McDonough, 1991; Rudnick et al., 2000). The observation of TITAN
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enrichment in high *He/*He OIB lavas suggests that the mantle domain hosting the

Earth’s “missing” TITAN is sampled by deep, high *He/*He mantle plumes.
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Chapter 1

Strontium isotopes in melt inclusions from
Samoan basalts: Implications for heterogeneity in
the Samoan plume*

Abstract

We measured *’Sr/*°Sr ratios on 41 olivine-hosted melt inclusions from nine
Samoan basalts using laser ablation multi-collector (LA-MC) ICPMS. 47S1/*Sr ratios are
corrected for mass bias after eliminating major isobaric interferences from Rb and K.
The external precision averages £320 ppm (20) for the ¥7Sr/*Sr ratios on natural Samoan
basalt glass standards of a similar composition to the melt inclusions.

All of the Sr-isotope ratios measured by LA-MC-ICPMS on Samoan melt
inclusions fall within the range measured on whole rocks using conventional methods.
However, melt inclusions from two Samoan basalt bulk rock samples are extremely
heterogeneous in *’Sr/**Sr (0.70459-0.70926), covering 70% of the variability observed
n ocean island basalts worldwide and nearly all of the variability observed in the Samoan
island chain (0.7044-0.7089). Seven melt inclusions from a third high *He/*He Samoan
basalt are isotopically homogeneous and exhibit ¥7S1/*Sr values from 0.70434 to
0.70469.

Several melt inclusions yield 7S1/*%Sr ratios higher than their host rock, indicating
that assimilation of oceanic crust and lithosphere is not the likely mechanism contributing
to the isotopic variability in these melt inclusions. Additionally, none of the 41 melt
inclusions analyzed exhibit *’Sr/**Sr ratios lower than the least radiogenic basalts in
Samoa (V'Sr/*°Sr=0.7044), within the quoted external precision. This provides an
additional argument against assimilation of oceanic crust and lithosphere as the source of
the isotopic diversity in the melt inclusions.

The trace element and isotopic diversity in Samoan melt inclusions can be modeled
by aggregated fractional melting of two sources: A high *He/*He source and an EM2
(enriched mantle 2) source. Melts of these two sources mix to generate the isotopic
diversity in the Samoan melt inclusions. However, the melt inclusions from a basalt with
the highest *He/*He ratios in Samoa exhibit no evidence of an enriched component, but
can be modeled as melts of a pure high *He/*He mantle source.

*Published as: M. G. Jackson and S. R. Hart, Strontium isotopes in melt inclusions from
Samoan basalts: Implications for heterogeneity in the Samoan plume, Earth. Planet. Sci.
Lett., v. 245, pp. 260-277, 2006, doi:10.1016/5.epsl.2006.02.040.

Reproduced with permission from Elsevier, 2007.
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Abstract

We measured Y S St ratios on 41 olivine-hosted melt inclusions from nine Samoan basalts using laser ablation multi-collector
(LA-MC) ICPMS. 7SSt ratios are corrected for mass bias after climmating major 1sobaric interferences from Rb and Kr. The
external precision averages 320 ppm (20) for the “'St™Sr ratios on natural Samoan basalt glass standards of a similar
composition to the melt inclusions.

All of the Sr-isotope ratios measured by LA-MC-ICPMS on Samoean melt inclusions fall within the range measured on whole-
rocks using conventional methods. Towever, melt inclusions from two Samoan basalt bulk rock samples are extremely
heterogencous in ™S Sr (0.70459 0.70926), cov cring 70% of the variability observed in occan island basalts worldwide and
nearly all of the variability observed in the Samoan island chain (1.7044- 0.7089). Seven melt inclusions from a third high “He e
Samoan basalt are isotopically homogencous and exhibit " St™Sr values from 0.70434 10 0.70469.

Several melt inclusions yiekd *"Sr**Sr ratios higher than their host rock. indicating that assimilation of occanic crust and
lithosphere is not the likely mechanism contributing 1o the isotopic variability in these melt inclusions. Additionally, none of the 41
melt inclusions analyzed exhibit *'Sr™Sr ratios lower than the least radiogenic basalts in Samoa (V'St*"Sr=10.7044). within the
quoted external precision. This provides an additional argument against assimilation of occanic crust and lithosphere as the source
of the isotopic diversity in the melt inclusions.

The trace element and 1sotopic diversity in Samoan melt inclusions can be modeled by aggregated fractional melting of two
sources: A high ‘He*He source and an EM2 (enriched mantle 2) source. Melts of these two sources mix 1o generate the isotopic
diversity in the Samoan melt inclusions. However, the melt inclusions from a basalt with the highest *He*He ratios in Samoa
exhibit no evidence of an enriched component, but can be modeled as melts of a pure high “He e mantle source.
€ 2006 Elsevier B.V. All nghts reserved.

-

Kevivords: ™ Sr*Sr; laser ablation; MC-ICPMS: melt inclusion; Samos; EM2: PHEM; FOZO

1. Introduction

Ocean island basalts (OIBs) erupted at hotspots are

thought to be the surface expression of buoyantly up-

* Corresponding author. Tel: ¢ 1 SOK% 289 3490; fax: 1 SO8 457 2175, welling mantle plumes that sample the mantle’s com-
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[1.2]. The Samoan islands and scamoumts, formed by
a mantle plume impinging on the Pacific plate just
north of the Tonga Trench, form a time-progressive
hotspot track |3,4] which conforms reasonably well to
Morgan’s hotspot model [5]. Samoan lavas exhibit the
highest “'St/™Sr ratios and the largest ¥'Sr/*°Sr
vanation (0.7044-0.7089) measured in fresh OIBs
[4.6], making them ideal for prospecting for diverse
Sr-isotope compositions in melt inclusions.

Olivine-hosted melt inclusions in Samoan  lavas
provide snapshots of diverse magma chemistry before
complete melt aggregation, providing an opportunity o
see more of the isotopic heterogeneity which exists in
the melt source but that is not detectable in whole
rocks. lHowever, the chemical variability i melt
inclusions may be generated by a number of processes
that obscure soarce variation, including pre-entrapment
fractional crystallization, post-entrapment diffusive re-
cquilibration, crustal assimilation, and degree, type and
depth of melting [ 7-16].

Studies delincating Pb-isotope  diversity in melt
inclusions have demonstrated that heterogeneous melt
SOUrCe COMPpOSILIONS are an important factor i generat-
ing compositional variabilty [17 21 A landmark Pb-
isotope study of melt inclusions hosted in basalts from
Mangaia Island in the Cook Islands revealed signifi-
cantly more isotopic heterogeneity than is found in
whole rocks from the island [ 1 7]. The results indicate the
presence of an unradiogenic Pb-isotope endmember in
the meltinclusions not discernable in whole-rock basalts.
Problematically, this unradiogenic Pb endmember has
been poorly characterized, owing parly to the large
uncertainties associated with in situ Pb-isotope measure-
ments: Pb-isotope data from melt inclusions generally
are limited to 2PbPh versus 2V PhA%Ph isotope
projections (due to the inability to collect precise H04pp
data on silicate melt mclusions), which place DMM
(depleted MORB mantle, low *He*He, low ¥7Sr/*“Sr),
FOZO (Focus Zone, high *He/*He, low ®'Sr/*Sp),
PIIEM (Primitive [felium Aantle, high “He/*le,
middle-range *'Sr/**Sr) and EM2 (enriched mantle 2,
low ‘e e, high 8r/%Sr) in such close praphical
proximity that they cannot be uncquivocally resolved.
The true pedigree of the unradiogenic Ph endmember in

Mangaia is still unknown, and could be similar to any of

these four endmembers.

An advantage to the Sr-isotope system is that the
EM2 endmember has dramatically higher ®7Sr/%Sr
ratios (~0.7089) [4] than the DMM (0.7026) [22],
PHEM (0.7045) [23] and FOZO (0.7030) [24] mantle
endmembers, and can be readily differentiated from the
three less radiogenie endmembers. PHEM hosts signif-
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icantly more radiogenic St than DMM and FOZ0 and is
easily resolved trom these two components. Untfortu-
nately, DMM and FOZO exhibit similar *’St/%Sr ratios
and it will be difficult to differentiate between these two
components as potential sources of the isotopic diversity
in melt inclusions.

We present Sr-isotope data from olivine-hosted melt
inclusions recovered from Samoan basalts, some of
which lie near the EM2 mantle endmember, with the
goal of better understanding the puzzling unradiogenic
component sampled by melt inclusions. To this end, we
also contribute  Sr-isotope data measured on melt
inclusions trom a recently discovered high 'He/*He
basalt from Samoa [25]. Our strategy is to analyze Sr
isotopes in melt inclusions from EM2 and high ‘1le/
*He endmember basalts from Samoa, to constrain the
tole of the various components-EM2, PHEM, DMM
and FOZO-that may be contributing to the Sr-isotope
diversity in the Samoan plame.

2. Methods

A detailed descripuon of the protocol used for in situ
measurement of St isotopes in basaltic glasses (and melt
inclusions) by LA-MC-ICPMS is provided in the Sup-
plementary data. In order to measare Sr-isotope ralios
in situ, we use a 213 nm NewWave laser ablation system
coupled to a Themo-Finnigan Neptune MC-1CPMS,
located in the Plasma Facility at Woods Hole Oceano-
graphic Institation (WHOI). During analytical runs, the
laser is run in aperture mode with 100% power, a pulse
rate of 20 Hz and a spot size of 120 pm. The raster
pattern varies depending on the size and shape of the
melt inclusion, and the line speed is 4 pm/s. Surface
contamination is removed by pre-ablation using the
same raster and spot size, but with a pulse rate of 5 Hz,
45% power und a raster speed of 30 pm/s.

During each analytical session, we measure intensities
on masses 82 through 88, Raw data arce exported 1o an
offline data correction program (TweaKr) for correcting
the Rb and Kr isobaric interferences. Runs with low
mtensities (1.e., < 1 Vonmass 88, due to small size or low
St content) were discarded as they are prone to large
systematic errors [26]. Masses 83 and BR are pure Rb and
St, respectively, with no signiticant known interterences,
and require correction only for mass fractionation. We
correct for Kr interferences on masses 84 and 86 so that
the mass fractionation-corrected S*St/%Sr value is
canonical (0.036372%). The protocol for comecting
mass 87 for the Rb imerference is the following: A
Samoan basalt glass with known ¥/8§%Se, from analysis
by conventional Thermal Tonization Mass Spectrometry
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(TIMS), is measured by laser ablation, Kr-corrected,
and the *RbA'Rb ratio is adjusted until the known
TIMS Y'St™Sr value of the glass 1s achieved. We
adopted the strategy of using the required **Rb/*"Rb of
the Samoan basalt glass standards 10 bracket the *Rb/
“Rb of the basalt glass unknowns. In order to estimate
the overall accuracy associated with this technique, we
apply contiguous bracketing of the glass standard runs,
and we are able to reproduce the known TIMS values to
within an average of =320 ppm (20 standard deviation).
However, due to uncertainty associated with the **Rb/
¥'Rb ratio (2.5875 £0.00275, 2er), the final, corrected

Y% ratio exhibits an eror magnification that is
directly proportional to the RW/Sr ratio of the sample.
Samples with low Rb/Sr will exhibit less ervor from the
Rb comection (145 ppm, Rb/Sr=0.04) than samplcs
with high Rb/Sr (503 ppm, Rb/Sr=0.14) (see Supple-
mentary data). However, over the range of Rb/Sr in the
Samoan basall glass standards (0.045-0.126), we find no
relationship between the intemal (in-mun) precision of

$7$1%Sr ratios (which average 45 ppm, 26 standard
deviation) and Rb/Sr during analyses of basalt glasses
by laser ablation. Similarly, there does not appear to be a
relationship between Ke'Sr and the internal precision or
reproducibility (extermal precision) of the *’Sr*¢Sy
vatios - Samoan glass standands over the range of
ratios that we have observed during melt inclusion
analysis (*"Kr/™Sr trom 0.00013 10 0.004). Finally, the
reproducibility of 'St/ Sr measurement does not
appear 10 be related to Sr intensity over the range of
Sr intensities observed in lasering Samoan glasses, a
range that encompasses the melt mclusion analyses.

Six melt inclusions were large enough for replicate
analysis (one meltinclusion, 71-2C, was replicated over
a one-year period), and five of their ¥/St/*°Sr ratios
were reproducible within the quoted precision. How-
ever, the replicate analysis ot melt inclusion 71-11a was
different by S50 ppm (sce Table 1), while error resulting,
trom the Rb correction is only 260 ppm (2¢') on Samoan
glass standards with similar Rb/St ratios. The internal
precision of the replicate analysis of this melt inclusion
was ~ 100 ppm (20). Data from this melt inclusion
indicates that larger-than-usual Rb/®'Rb variations
over time can occasionally generate uncertainties
(ahove the 27 level) in Y/'Sr/*°Sr that are somewhat
larger than error predicted by the data from Samoan
glass standards.

An upper limit for the *'Sr/**Sr measurement
precision on Samoan melt inclusions with low Rb/Sr
can be inferred from the near-uniform ratios obtained
on melt inclusions from the high “He*He Ofu basalt.
The Rb/Sr values were among the lowest during analy-

22

sis of Ofu melt inclusions, and the tight clustering of
the Ofu melt inclusions may be partially explained by
decreased emror of *'St/*°Sr measurement for these
samples compared to other, higher Rb/Sr Samoan
glasses and melt inclusions from Vailulu’u and Malu-
malu. If we assume that the Otu melt inclusions are
isotopically homogencous, then the external preeision
on these 7 melt inclusions is +335 ppm (20). Some of
the apparent variability may be a result of error from
the Rb correction, which 18 =190 ppm (20) @t Rh/Sr
ratios of (.033, and may not retlect true variability.
Additionally, internal precision varied from 60 (o
226 ppm (24 standard crror) on the seven Ofu meh
inclusions.

Masses 85 and 8R represent pure Rb and Sr. ves-
pectively, so that fairly precise measurement of Rb/Sr
ratios can be generated. After comecting tor mass tiuc-
tionation (= 1.3%/amu), Rb/Sr ratios on Samoan basalt
glasses measured by laser ablation are reproduccable 1o
17% (20, compared o ratios obtained by XRI/ICP
techmques on the same samples), and preeise (1.7%%, 20)
during multiple runs on the same glass (see Supple-
mentary data).

Major clement compositions of glassy and homog-
enized melt inclusions were obtained with a JEOL-733
automated electron microprobe at the Massachusetts
Institute of Technology using an electron beam with
current of 10 nA and accelerating potential of 15 kV
focused to a spot of 1 2 pm in diameter for olivine
analyses, and defocused to 10 pm for glass analyses.
Trace element contents were determined with a Cameca
IMS 3f jon microprobe following the techniques
described n [27,28]. A small beam (5 pm diameter
spot), combined with a high-energy filtering technique
(80-100 ¢V window), was used to determine trace
element concentrations. Precision tor Sr, La, Zr, Y is
estimated to be £13%, and £20 30% for Ba, Nb and
Rb. Homogemzation of olivine-hosted melt inclusions
was performed in a furnace at 11871220 C (depending
on olivine composition) at 1 atm pressare for S min in a
graphite capsule.

To correct for the etiects of crystallization of olivine
in the glassy and homogenized melt inclusions, we add
equilibrium olivine to the melt inclusions m 0.1%
increments until equilibrium with mantle olivine (Fog)
is achieved, assuming olivine-melt partitioning of Fe
and Mg from [29]. Instead of correcting the melt in-
clusions to be in equilibrium with the host olivine, this
correction scheme is chosen so that we can compare
them to similarly comrected Samoan whole-rock lavas
(after discarding data from the most evolved-
MgO<6.5 wi.%-whole-rock samples).
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3. Results
3.1. Sr-isotope variability in melt inclusions

Sr-isotopes were measured in melt inclusions from
nine geochemically well-characterized basalt samples
[4.25] from five islands and scamounts located along
the Samoan hotspot track. Olivines (Fo 4.4 ) with large
cllipsoidal melt nclusions (30 250 pm diameter) were
separated from the basalt samples for melt inclusion
exposure and isotopic analysis. Most of the melt in-
clusions were crystalline and usually contained den-
dritic clinopyroxene in a glassy matrix, with spinel and
rare sulfide globules: some (= 5%) of the melt inclu-
sions were glassy. The high ‘He/*He basalt sample
OFU-04-06 was unique in that amphibole and apatite
were common melt inclusion phases, and carbonate was
also observed.

Olivines (Fogy_gs) hosting melt inclusions were
separated from Malumalu scamount dredge sample 78-
1, a picrite with the highest ¥ 8% Gy ratio (0.7089) of
any OIB [4]. Meclt inclusion-rich olivines were also
recovered from dredge sample 71-2 (Foss-¢;) from

/ailulu’u, a seamount that displays intermediate
enrichment relative to the other Samoan islands and
scamounts (bulk rock ¥'St/*®Sr isotope ratios from
0.7052 10 0.7067, n=20). From Ofu Island, olivines
(Fos6-g4) were recovered trom ankaramite dike sample
OFU-04-06, which cxhibits the highest *He/*He
measured in a4 Samoan basalt [25]. Lavas from Ofu
arc the most isotopically homogencous of the volcanocs
in the Samoan chain (*/Sr/*°Sr from 0.70444 to
0.70480, n—12). Finally, a smaller number of olivines
were separated for melt inclusion analysis trom
Vailulu'u dredge samples 71-11 (Fog, _g3), 63-2
(Fogg_g7) and 68-3 (Fog;_gg), Malumalu dredge sample
78-3 (Fogy), Ta'u Island dredge sample 74-1 (Fogs), and
Savai'i subacrial post-crosional sample S11 (Foz).

The Sr-isotope data from melt inclusions in just three
Samoan whole-rock samples (OFU-04-06, 78-1 and 71-
2) define a broad array that encompasses the entire
spectrum of Sr-isotope variability (0.70434-0.70926)
recorded in Samoan basalts (Fig. 1 and Table 1). Eleven
melt inclusions from 78-1 display *"St/**Sr values of
0.70686 0.70926, and encompass over 30% of the
isotope variability observed in the OIB mantle.
Vailulu’u melt inclusions from dredge samples 71-2
(M'Se/0Sr=0.70459 0.70602, n=12 melt inclusions)
and 68-3 (*'Sr/*Sr=0.70480-0.70624, n=3) exhibit a
smaller range of Sr-isotope values than 78-1. However,
the magnitude of the Sr-isotope heterogeneity in the
melt inclusions from these two samples is approxi-
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Fig. 1. T (upper pancl) and Rh/Sr (lower panel) in melt
inclusions from nine basalt samples compared to the total variation in
cach island/seamomt (shown hy boxes). References for whole-rock
data can be found in (4] The nine whole rocks from which the melt
inclusions were separated are represented by larger symbols. No melt
inclusions are more isotopically depleted than the most depleted lava
measured in the island chain (*'Sr/**Sr>0.7044). The range for EPR
N-MORB [22] (averaged by segment) plots significantly below the
Samoan whale racks and melt inchisions. Replicate analyses on the
same melt inclusion are averaged. The Rb/Sr for Savai'i whole-rock
sample SAV1-25 is not included because of alteration. Internal
precision (20, standard error) for *"Sr*°Sr is approximately the size of
the data symbals. *’Sr**Sr error bars represent error propagated from
the Rb correction, as determined on Samoan plass standards, and
dominates the error associated with *’Sr/**Sr measurement by LA-
ICP-MS; maximuwn and minimum (500 and 150 ppm) errors are
shown lor reference. Error bars for Rb/Sr are £17% (20, standard
deviation), and are based on the reproduceability of Rb/Sr measure-
ment on Samoan plass standards; internal precision for Rh/Sr averages
an order of magnitude better. Samples are listed in order of increasing
whole-rock *'Sr#*Sr, from left to right.

mately equal to the variability observed in Vailulu'u
seamount lavas, although the melt inclusions sample a
more depleted component than observed in whole rocks
from this seamount. Among the Vailulu’u samples, only
sample 71-11 (*/Sr/®°Sr=0.70633 0.70692, n=2)
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hosts inclusions that sample compositions similar to the
most cnriched isotopic compositions observed in
Vailulu'u volcano. Like sample 71-11, isotopic analy-
ses of melt inclusions trom sample 63-2 (¥
8r=0.70520-0.70613, n=3) lic completely within
the 1sotopic range found in the whole rocks trom
Vailula'u scamount. OFU-04-06 melt inclusions exhib-
it the least isotopic variability (*'St/**Sr=0.70434-
0.70469, n=7) among the samples with isotopic
analyses on more than two different inclusions, and
this variability 1s similar to the variability sampled by
whale-rock lavas from the island. There 1s only a single
melh inclusion analysis from cach of basalt samples 78-
3(0.70807). 74-1 (0.70477) and S11 (0.70518): the St-
Isotope ratios he within the range observed in the
respective host volcanocs.

Although melt inclusions show more depleted iso-
topic compaositions than the island or seamount from
which they were recovered. they are not observed 1o
sample compositions more depleted than whole rocks
from the Samoan hotspot (*7S1/%Sr 2> 0.7044). There-
tore, the least radiogenic Sr-isotope ratios in Samoan
basalts and melt inclusions are significantly more
enriched than the depleted apper mantle sampled by
MORB along the EPR (East Pacitic Rise: 0.70228-
0.70287, N-MORB segment averages from [22]): the
old oceanic crust upon which the Samoan island cham is
constructed 1s probably 1sotopically similar to these
maodemn PR basalts.

Rb/Sr ratios measured by LA-ICP MS on the same
set of melt inclusions tell a story similar to that of the
1sotopes. Melt inclusions in sample 78-1 exhibit the
largest variation in Rb/Sr ratios (0.0593-0.1421), and
the variability is similar to that observed in the whole
rocks measured from Malumalu scamount. The Rb/St
ratios in OFU-04-06 melt inclusions show some hete-
rogeneity (Rb/Sr trom 0.0476 to 0.0395, n=7), but this
variability is smaller than the variability sampled by
whole-rock lavas from the island. Vailulu'u melt m-
clusions from dredge samples 71-2 (Rbh/Sr from 0.0469
to 0.1028, n= 12 melt inclusions) and 68-3 (Rb/Sr from
0.060 to 0.1027, n=3) exhibit a range of Rb/Sr values
that falls between 78-1 and OFU-04-06. Unlike the
isotopes, however, the magnitude of the Rb/Sr hetero-
geneity in the melt inclusions trom samples 71-2 and
68-3 is greater than the variability observed in Vailulu'u
seamount lavas, and. within ervor of measurement, do
not sample a component with lower Rb/Sr than
observed in whole rocks from this scamount.

The present dataset suggests that the isotopic
variahility exhibited by the melt inclusions in a basalt
sample may be a funcuon of the whole-rock isotopic
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composition. In I1g. 2, the Sr-isotope variability of melt
inclusions in three basalt samples—thosc with the largest
number of melt inclusion analyses is plotted against
the bulk ¥ Sr/%¢sr composition of the respective whole
rocks. The *7St/%¢Sr variability. determined by the dif-
terence between the highest and the lowest ©7Sr™Sy
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Fig. 2. Upper puncl: Melt inclusion isotopic variability (in ppm)j as a
function. of whole-rock *'Sr/Sr ratio for the three Samoan lavas with:
the greatest rumber of melt inclusion aralyses. Melt inclusion 1sotopic
variability increases witl: increasing ©'SrASr (and decrensing “Her
“He. not shown) in the three Samoan basalts. Variability is determined
by the difference between the most isotopically extreme melt
inclusions in a basalt sample. The maximum and minimum values
for this vanability are a result of the uncertainty introcuced by the Rb
correction, which is directly related to the Rb/Sr of the melt inclusion.
For example, the maximum variability in basalt sample 78-1 is
determined by the difference hetween the highest {0.7092 nlus
391 ppm uncertainty) and lowest plausible *’Sr**Sr (0.7072 minus
393 ppm uncertainty). The minimum vanability is determined by the
diflerenee between the lowest plausible FTSeASr i the most enriched
melt inclusion (1., 0.7089, or 0.7092 minus 389 ppm uncertainty) and
the highest plausible *'Sr**Sr in the most depleted melt inclusior.
(0.7074, or 07072 plux 393 ppm ancerainty). Lower pancl: Mclt
inclusion Rh/Sr vanability (absolute) as a function ot whole-rock 378
481 ratio. Maximum and mininmum vanability is determined the same
way, hul assimes m uncertainty for Rh/Sr of 17%. The magnitade of
vaniahility duc to internal precision is approximated by the size of the
data symbols in both panels.
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ratios from melt inclusions in a given basalt sample,
cxhibits a maximum and a minimum duc to the uncer-
tainty introduced by the Rb correction. Although the
number of data points is imited, the data are consistent
with melt inclusion isowopic diversity increasing with
mncreasing, 8781/ Sr (increasing EM2 component) and
decreasing *He/*He (not shown). The range of varia-
bility for Malumalu sample 78-1 is larger than, but
overlaps with, the range of values trom Vailulu'u sam-
ple 71-2. The melt inclusions from the high *He/*He
Ofu basalt exhibit the smallest range of probable *7Sr/
¥ S ratios, and they do not overlap with the range from
samples 71-2 and 78-1. A similar observation can bhe
made for the variability of Rb/Sr ratios in the melt
nclusions, where Rb/Sr tends toward greater melt
inclusion variability in samples 78-1 and 71-2; the Ofu
sample has the smallest range of variability, and
overlaps slightly with the lowest probable variability
in sample 71-2. It is notable that QFU-04-06 exhibits
the highest *He/*1le ratio (and low *’$r/*%Sr) found in
Samoa, an observation that may be linked to the small
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degree of isotopic and trace element variability mn its
melt inclusions.

3.2. Major and trace element characteristics of melt
inclusions

Rb/Sr and ¥Sr/®%Sr ratios from the melt inclusions
define a broad array that cncompassces the entire spectrum
of Sr-isotope and Rb/Sy variability recorded in Samoan
basalts (Fig. 3). Curiously, the melt inclusions from Ma-
lumalu do not form an array by themselves, but plot over a
broad region. The Rb/Sr and Sr-isotope data array form a
crude mantle isochron of 1.1 Ga.

Major and trace elements were measured on melt
inclusions from Vailulu u, Malumalu and Ofu basalts, and
they reveal a large range of compositions (Table 2). Al
though the trace element compositions of Vailulu'u melt
inclusions are similar to whole-rock analyses from this
seamount, melt inclusions from EM2 endmember basalt
78-1 record a greater degree of trace element variability
thanall ofthe whole rocks measured from Malumalu. One
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Fig. 3. ¥/Sr**Sr versus Rb/Sr ratios for Samoan whole rocks and melt inclusions, determined by laser ablation. The shaded regions represent the
extent of melt mclusion variability for the volcanoes (Vailulu'u, Malumalu and Ofi). The open region encompasses the least evolved
(MpO = 6.5 w.%) whole-rock measurements trom these three voleanoces and Ta’u, thus encompassing islands and scamounts only on the castern
half of the Samoan hotspot track (where ~98% of the analyzed melt inclusions were recovered). Whole-rock data from Otu is unpublishec, and
for the other volcanoes is from [4]. MORD range is limited to EPR N-MORE (M) segment averages [22]. Iligh *ITe/*Ile basalts from IHawaii (II)
[37), leehand (1) [3%] and Baftin Island (B) [39] provide an approximation for FOZO (higher "He/'He mtiox exist for Hawaiinn basalts [30],
mat *7Sr/%88r data are not available for these samples; Rh/Sr data for high *He/*He samples from Baftin lsland are tound in [41]). Frror bars on
symbols are internal precision of measurement (20, mean deviation). Error bars on periphery of figure denote external precision of measurements,
as determined by Samoan glass standards with compositions similar to the melt inclusions: Rb/Sr error is 17% (20, standard deviation) and *'Sy/
51 error is hased on error associated with the Rb correction (207, standard deviation). Replicate analyses of the same melt inclusion are shown
The melt inclusion data form a crude mantle isochron age of ~ 1.1 Ga.
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Fig. 4. PUM-normalized trace element patterns of Samoan basalts and
melt inclusions; melt inclusion data is from ion probe analysis, excenl
tor K arud 11, which were measired by electron probe. Vailula'u melt
mclusinnsare from three samples: 71-2 (prey lines), 68-3 (dashed line),
71211 (solid black lines). Malumalu and Ofa melt inclosions are from
samples TR 1 and OFU-04-06, respectively, Allmelt inelusions (exeen!
for ane melt inclusion from 78-1 and two trom OFU-04-06 that have no
major e¢lement compositions, see Table 2) are corrected for olivine
fractionation 1o be in equilibrican with mantle olivine of Fogg (see text
toreorreetion schemie). The prey field encloses the ranpe of whole-rock
patterns from the least evolved basalts (+6.5 wt.% MgQ) from
Vailule™v, Ofu and Malumaly, whole-rock compositions have been
carrected for olivine addition/fractionation. PUM values from 730]
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*He (not shown) in Sumoan basalts. Nb/Zr may serve as a
proxy for *He™He isotopes in Samoan melt inclusions:
theretore, it may be important that the Nb/Zr ratios in
several of the Ofu-04-06 melt inclusions exhibit values
lower than the ratios obscrved in whole rocks.

3.3 Melting models of the EM?2 source

It is imponant to place constraints on the trace
clement variability introduced by melting processes. A
plot of Sr versus Tv'Zr shows that the majority of the melt
inclusions form an array that extends outside of the
whole-rock ficld o enriched St and low 1177 values
(Fig. 0). The low Ti/Zr ratios (15-88) observed in the
melt inclusions extend to lower values than observed in
whole-rock basalts from the castern Samoa islands and
seamounts (63-130). Such low values cannot be
produced by crystal fractionation of melts before olivine
entrapment, and assimilation of MORB (Ti/Zr—88) also
fails to produce low Ti'Zr values [31]. A model of the
Samoan EM2 source composition [4] provides a robust
estimate for the mantle source sampled by the exweme
EM2 basalt sample 78-1, and variable degrees of
aggregated modal fractional melis of this source
(Sr=20.0 ppm, Ti’Zr=101.9) in the gamet and spinel
stability fields can describe much of the melt inclusion
array in Fig. 6. Consistent with the model of the EM2
source as a metasomatized harzburgite (4], we adopt a
harzburgite source lithology (1% spinel, 3.6% clinopyr-
oxene [cpx], 20.6% orthopyroxene [opx] and 74.8%
olivine), with mineral modes trom [32 | and mineral/melt
partition coefficients from [33]. We assume the mineral
modcs of a similar bulk composition for melting in the
gamet stability tield (3.8% gamet, 2.7% cpx, 17.7% opx
and 75.8% olivine) using the spinel to gamet conversion
from [34]. The two meltng models tollow similat
trajectories, but melting in the spinel stability field is
required to generate the exceptionally high Sroand low
Ti'Zr observed in the ultra-enriched Malumalu melt
mnchusions. Interestingly, i the EM2 source [4] has a
more cpx-rich lithology than the harzburgite in our
melting model, 1t will not produce melts with the Sr
concentrations observed in the most enriched melt in-
clusion at reasonable degrees (> 1%) of melting (Fig. 7).

Other geochemical indicators, including Y/ 7r ratios,
more clearly resolve the relative roles of mehing in the
gamet and spinel stability fields. Due to the relative
compatibility of’ Y in residual gamet, low Y/Zr ratios are
consistent with melting in the presence of gamet, A role for
melting in the gamet stability field is suggested in a plot of
Y /7 against Nb/Zr in Fig_ 6. This is particularly trae for the
Ofu melt melusions, which trend to the lowest Y /Zr tatios
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observed in the melt inclusions suite ind straddle the gamet
melting trend at 5% melt. This is similar to the TiZx versus
Sr plot, where the gamet melting curve trends through the
Ofu melt inclusion field at ~4% melt. Malumalu and
Vailulu’u melt inclusions (and Samoan whole rocks) are
offset to higher Y/Zr ratios, perhaps suggesting a larger role
for melting in the spinel stability field, an observation that is
consistent with the same subset of melt inclusions in the Ti
Zrx versus St melt model.

No single melting model of the EM2 source perfectly
describes the melt inclusion fields tor all three volcanoes,
but we find that a combination of melting and mixing
satisfactorily reproduces the melt inclusion geochemical
variability. The relative roles of melting and mixing of
different components can be partially deconvolved m a
plot of ¥'Sr/*Sr versus 1/Sr (Fig. §). where two-
component mixing trajectories are linear and variable
degrees of melting result in horizontal trajectonies. The
Ofu melt inclusions lic on a horizontal wend, which can
be described by various degrees of melting of a single
source that exhibits a ¥ Si/%¢Sy ratio of ~0.7045, and the
Malumalu and Vailulu’u melt inclusions torm a diagonal
array that suggests a role tor two-component mixing.

4. Discussion
4.1. A homogeneous sowrce for PHEM basalts

Compelling evidence that the Samoan melt inclusions
sample a heterogeneous source comes from Si-isotope
analysis of the melt inclusions from Vailulu'u and
Malumalu basalts. However, the umformly untadiogenic
character of the Ofu melt inclusions precludes a significant
contribution trom an enriched, radiogenic (EM2) compo-
nent. This suggests that Samoan melts with high *He*He
sample a homogeneous source and do not mix with melts of
an enriched component. By comparison, the melt mclu-
sions from Malumalu and Vailulu®u span a large range of St
concentrations and isotopic compositions, indicating that
both variable degrees of melting and mixing have occuarred.
An aggregated fractional melt trajectory for the gamet
stability field is plotted (Fig. 8) tor the EM?2 source [4], and
the Malumalu and Vailulu’u melt inclusions form a broad
array that trends diagonally away from the horizontal Ofu
melting trajectory toward low degree (~1%) melts of the
EM2 source; the Vailulu’u and Malumalu melt inclusions
can be produced by aggregated melts of an Ofu source that
then mix with aggregated fractional gamet melts of the
EM2 source.

Unlike the EM2 source, the trace element source
composition of the high *He*He, lower ¥ St/*Sr Ofu
source component 1s less clear. Called PHEM [23]. this
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component melts to form basalts and melt inelusions Ofu melt inclusion. The second secnario can be tested
from Otu. However, it is possible to bracket the source by invoking the trace element enriched EM2 source, and
composition of this component and estimate the degree assigning 1t & lherzolitic lithology that is similar o
of melting captured in the Ofu melt inclusions. Although DMM. At reasonable degrees of melting (F=1.53%),
the Ofu basalts are more isotopically depleted than the such a source can generate melts with sufticiently high
EM2 basalts, an isotopically and trace element depleted Sr contents to match the mnge observed in Ofu. Finally,
DMM lherzolite source (7 ppm Sr) [35] fails to produce a harzburgitic EM2 source. which is both more
the high Sr concentrations observed in the Ofu melt refractory and trace element enriched than DMM, can
inclusions (Fig. 7). This would suggest that the Ofu generale the most enriched melt inclusions  from
source is either more refractory or more trace element Malumalu and Ofu between 1% and 2% melting. The
enriched, or both, than the lherzolitic [35] DMM source. harzburgitic EM2 source can serve as a probuable upper
The first option can be explored by invoking a more limit for the wace clement enrichment of the PHEM
refractory, harzburgitic DMM source. However, only source because we consider it unlikely for the less
unreasonably low (#<1%) degrees of melting can isotopically enriched PHEM  component to exhibit
produce the most enriched St coneenuation observed an greater tace clement enrichment than EM2. However,
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et t olivine frac

-corrected Sr concentrations in the most enriched melt inclusions from Malumalu sample 78-1 (upper line) and

Vailuli'w sample 71-2 (lower line). DMM trace element source and lherzolite lithology from [35], converted 10 equivalent garnet facies lithology
using relationship from [34]. EM2 source trom [4]. Harzhurgite lithology trom [32]. Note that only the EM2 source with a harzburgite lithology can
produce the highest St concentration observed in the melt inclusion from sample 78-1 at 2 1%. All melting is non-mocal in the garnet stability field.
Neither modal melting nor melting in the spinel stability field significantly changes our conclusions at 772 1%

a PHEM source with a lithology (and/or Sr concentra-
tions) intermediate between DMM and EM2 cannot be
raled out. If PHEM has the same Sr content and
lithology as the EM2 source, the Vailulu'u and
Malumalu melt inclusion arrays can be explained as
mixtures of 6.5 L1.5% melts of PHEM and ~ 1% mels
of EM2. However, the degree of melting of the PHEM
source that contributes to the Malumalu  Vailulu'u mi-
xing array should be taken as 4 maximum.

Unlike the Ofu melt inclusions, which sample a purc
PHEM source, no melt inclusions sample a pure EM?2
melt (as calclulated by [4], using ultra-enriched Sr-
isotope compositions trom Samoan xenoliths [36]).
Mixing lines in Fig. 8 between a 1% EM2 melt and
6.5+ 1.5% PHEM meclts
Vailulu’u and Malumalu melt inclusions with both *'Sr/
SeSr and Sr coneentration data are dominated by a PHEM
component, and exhibit less than a ~30% contribution
from the EM2 component. However, one Malumalu melt
inclusion exhibits a much larger contribution from an
EM2 component, as indicated by its high (~ 1865 ppm)
Sr content and low (~17) Ti/Zr ratio (Fig. 6). The
PHEM-EM2 melt mixing lines in Fig. & suggest that this
melt inclusion contains more than a 70% contribution
trom the EM2 melt component. The mixing model
suggests that a 70% contribution from an EM2 melt

R7 . R . .
would produce an extrapolated *'Sr/**Sr ratio of

~0.712, which is a significantly higher ratio than has
been observed in a Samoan basalt, but close to the ¥’ St/

indicate that the subset of

31

S6Gr of epx in metasomatized xenoliths from Savai’i in
western Samoa. Unfortunately, this ulta-enriched melt
inclusion was oo small for isotopic analysis.

4.2, Isotopic variability in Samoan melt inclusions:
MORE or I'OZ0?

Correlations between trace elements and St isotopes
suggest that trace element vartability in Samoan basalts
and meclt inclusions may reflect heterogencity in the
Samoan mantle. Rb/Sr, K., O, (Ba/Nb)y and Nb/Zr ratios
correlate with Sroisotopes in Samoan lavas and melt
inclusions, suggesting that these trace elements are hete-
rogeneous m the Samoan mantle source. However, a
combination of melting processes and variable source
lithology may drive the observed correlations, limiting
the role for source heterogeneity. For example, the
relatively constant K;O concentrations and negative
(PUM-normalized) anomalies in Samoan lavas may be a
result of residual phlogopite, which may cause K.,O to
behave more compatibly in the Samoan source during
melting. However, K.,O comelates with *'St/**Sr in the
whole rocks and melt inclusions (Fig. 3), suggesting a
role for K,O heterogeneity in the Samoan source, and
that K,O concentrations in Samoan basalts and melt
inclusions may be controlled only partially by melting
processes.

Assuming that Rb/Sr vanability in Samoan melts
reflects source variability, the arry formed by the *'St/
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*¢Sr and Rb/Sr data can be modeled as binary mixing
between a PHEM and an EM2 component, a model
originally proposed by Farley et al. [23]. Such a model is
consistent with the trace clement melting/mixing model
proposed above, which suggests that the Ofu melt in-
clusions sample only a high *He*He PHEM mantle
reservoir and the Vailulu'u and Malumalu melt inclu-
sions result from mixing melts from both the PHEM and
EM2 mantle reservoirs.

Previous work on the Pb-isotopic variability in melt
inclusions [17] suggested that the unradiogenic end-
member in EM2 basalts from Tahaa may be depleted
(MORB or FOZ0?), and thus lie at even lower /Sr/*Sy
values than observed in the high *He*He PHEM lavas
from Ofu (Fig. 3). In fact, an extrapolation of the Samoa
melt inclusion and whole-rock basalt array in Fig. 3 does
indeed wend toward one of two depleted components
that are significantly less radiogenic than PHEM: MORB
[22] or @ common high ‘lle/*lle mantle component,
called FOZO [24] (Fig. 3). The FOZO component is
represented by basalts with the highest “He/ e from
Hawaii [37], leeland [3R] and Baffin Island [39]. Both
MORB and FOZO lic on a similar extension of the
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Samoa melt inclusion *'St*°Sr-Rb/Sr array. so it is
difficult to distinguish which, if either, of these two
components 1s sampled by the Samoan melt inclusions.
If the depleted component is MORB, it may be entrained
inmelt inclusions by shallow anatexis due to preterential
cooling and olivine crystallization near magma chamber
and conduit walls [7,8.21]. However, the presence of
FOZO (or any other high “He e component) in the
Samoan melt inclusions would require that the isotopic
variability in melt inclusions reflect true source hetero-
geneity, assuming that a high “He*He component does
not exist in the oceanic crust or lithosphere.

4.3, The cuse against MORB

It may be possible to look at other lines of geoche-
mical evidence o discern whether MORB or FOZO play
a role in augmenting the isotopic diversity in Sumoan
melt inclusions. Models suggesting that melt mclusion
isotopic variability is causced only by contamination
trom unradiogenic oceanic crust and lithosphere at
shallow levels do not explain how several Samoan melt
clusions have higher *'Se*Sr ratios than their host
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bulk rock compositions (see Fig. 1). For example,
Samoan whole-rock basalt sample 71-11 hosts several
melt inclusions that have *'Sr/*®Sr ratios (up to
(.70692) that are significantly more enriched than its
host rock (0.70550). The presence of *St/*Sr ratios in
melt inclusions that are higher than the bulk rock
require that at least some of the isotopic variability
present in melt inclusions is derived from the mantle
source, because the enriched component in melt
inclusion 71-11a is too enriched to be found in the
oceanic crust and lithosphere. Theretore, 1 assimilation
of oceanic crust and lithosphere contributes heteroge-
neity 1o the Samoan melt inclusions, it cannot be the
only means by which isotopic heterogeneity is
produced in Samoan melt inclusions, and some
contribution from the melt source must be involved
as well.

On a different tack, the case for the less radiogenic
melt inclusions sampling the depleted occanic crust and
lithosphere by assimilation is limited severely by the
observation that, within analytical uncertainty, not a
single melt inclusion has an *”St/*“Sr ratio that is lower
than the least radiogenic (¥'8r/%8r=0.7044) whole-
rock basalt measured in the Samoan islands (Fig. 1). The
Samoan melt inclusions trace out a range ot Sr-isotope
variability that is confined to the region of Sr-isotope
space defmed by the Samoan whole-rock data (Fig. 3).
On an island-by-island basis, the interpretation is more
complicated, as melt inclusions from two Vailulu'u
whole-rocks sample a component more depleted than
found in whole rocks measured from the seamount.
However, the least radiogenic component found in Vi-
luluu melt inclusions is also found in lavas from ncarby
Samoan islands (e.g., Ta’u and Otu), exhibits elevated
*He/*He ratios, and is thus known (o exist in the Samoan
plume. Many of the downstream Samoan seamounts
also are dominated by ¥/8r/%8r between 0.7044 and
0.7049 [3]. It seems unnecessary, therefore, o invoke
contamination from the oceanic crust and lithosphere to
explain the presence of the less radiogenic component
when it already exists inside the plume! Although the
argument can be made that an insufficient number of
melt inclusions have been analyzed to detect a
component more depleted than what is found in whole
rocks, the number of melt inclusions analyzed for Sr
isotopes (n=41) is already significant, and is equal to
~ 302 of the number of published *’Sr/**Sr whole-rock
analyses from the Samoan hotspot.

The high *He*He, unradiogenic Sr component
in Samoan basalts (PIIEM) is unique in that it ex-
hibits ¥7Sr/%Sr ratios more enriched than in the high
"He/*He Hawaii, Iecland or Baffin Island basalis,
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suggesting that the high ‘He/*He reservoir in the
mantle is at least mildly heterogencous in *7Sr/%Sr
ratios. The same line of reasoning that precludes the
presence of entrained melts from oceanic lithosphere
in the Samoan melt inclusions also minimizes the
possibility that a traditional, depleted FOZO-like
component (V785807030 [24]) serves as the
unradiogenic Sr component: If melt inclusion diversity
were a result of entrainment of a component (MORB
or FOZO) more depleted than found in Samoan
basalts, then the melt inclusions would extend to *"Sr.
¥0Qr ratios lower than found in whole rocks (0.7044).
However, the high *He*He Samoan sample OFU-04-
06 defines the lowest *’St/*“Sr portion of the Samoan
whole-rock mixing array (see Fig. 3) and the melt
inclusions arc identical to the whole rock, suggesting
that the least radiogenic Sr composition sampled by
the Ofu basalts is the same component found in the
melt inclusions. Therefore, we  maintain  that  the
unradiogenic Sr component in Samoan melt inclusions
15 more cnriched than MORB or FOZO, and is likely
the same PHEM component sampled by the high *He/
*He Samoan basalts, suggesting that a two-component
EM2-PHEM mixing model may be the most
appropriate for melt inclusions originating in the
enriched Samoan mantle. Scatter around such a
mixing model (Fig. &) may be due to minor
contributions from other components [4] that may
exist in the Samoan mantle.

4.4. Implications for source heterogeneity (or lack
thereof)

The results tor Sr-isotope measurements in Samoan
melt inclusions support an argament for an origin of the
isotopic variability in the melt source, not contamination
by oceanic crust and lithosphere. We assume that the
isotopic variability (or lack thereof) in Samoan melt
inclusions is not a product of variable degrees ot homo-
genization in magma conduits and chambers before
olivine entrapment, but rather that the isotopic variabil-
ity n melt inclusions retlects the heterogeneity of the
melt source: When the melt source is heterogeneous,
melt inclusions capture the range of heterogeneity while
the isotopic composition of the bulk rock lava represents
an average of the heterogeneity sampled in the melt. By
extension, we infer that the high "He/*He whole-rock
sample OFU-04-06 tends to sample @ more homoge-
neous source, as the melt inclusions are nearly isoto-
pically homogeneous and identical to the bulk rock.
Perhaps, then, only melting of a pure PHEM source
allows the high *He*He composition to persist in the
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Ofu wholevock lavas. Vailulu'u and Malumalu melt other Samoan basalts do not exhibit ratios lower
inclusions arc more isotopically heterogencous, and thus than 0.7044. This obscrvation is consistent with
are inferred to sample a heterogencous source that cap- the hypothesis that a high “He/*Ile component,
tures much ot the mixing spectrum hetween the TM?2 not MORB, is the unradiogenic Sr endmember in
and PHEM componemts. The contribution of an EM2 Samoan melt inclusions.
component may explain the diminished ‘He/*1le com- 4.) Melt inclusions from a high ‘He/lle Samoan
position in the lavas from these two volcanoes. Al- basalt (with less radiogenic 7Se/%Sr) are isoto-
though ¥'St/*Sr analyses of the melt inclusions from pically more homogencous than the melt inclu-
high “He*He basalts from other localities are not yet sions from basalts with higher ¥ St/**Sr (more
available, perhaps the high *He*He mantle that these contribution from an EM2 component). This may
basalts sample is homogeneous and devoid of enriched indicate that the Samoan high *He/*He basalts
domains. This hypothesis is consistent with the mel- sample a source that 15 more sotopically homo-
ting  mixing model above (see Fig. 8), which suggests geneous than the soaree that produces basalts with
that the isotopically homogeneous melt inclusions from an EM2 component.
the high *11e11e basalt from Ofu exhibit no evidence of
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Appendix A. Supplementary data
5. Summary
Supplementary data associated with this article can

The following conclusions can be drawn from this be tound, in the online version, at doiz10.1016/j.epsl.
study: 2006.02.040.
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Supplementary Data (Jackson and Hart, 2006)

Sr isotopes by laser ablation PIMMS: Application to Samoan basaltic
melt inclusions

1. Introduction

We have thoroughly, but not exhaustively, investigated the parameters necessary
for precise and accurate Sr isotope analysis of basalt glasses by in situ laser ablation
PIMMS. The lower limit of external precision attained under optimal conditions for the
SRM987 Sr solution standard is + 5 ppm (=25 volt data. 15), and 1s fairly comparable to
good TIMS data. For lower intensity data (-~ 1-5 volts). more comparable to our typical
laser ablation work. the external solution precision is in the 20-80 ppm range. We have
instituted a new method for Kr correction that is based on *'Kr, and a method for Rb
correction that utilizes basalt glass standards with significant Rb/Sr ratios and known
YSr/*Sr ratios. Even in basalts requiring very large Rb corrections. we are able 10 obtain
$7Sr/*Sr data with ~320 ppm external precision and 45 ppm internal (in-run) precision
(26 standard deviation) on a suite of Samoan glasses with known ¥'Sr/*Sr ratios.

We developed an analytical protocol for the measurement of St isotope ratios by
Laser Ablation PIMMS for analysis of melt inclusions in olivine phenocrysts in OIBs
(ocean island basalts) from the EM2 (Samoa), EM1 (Pitcaim, Christmas) and HIMU
(Mangaia) mantle end-members. We acknowledge a significant existing body of work on
Sr isotope measurement by laser ablation PIMMS, but will not attempt to review this
literature or compare it with the protocols we have installed on the NEPTUNE at the
Woods Hole Oceanographic Institution [1-6].

2. Techniques
2.1. Instrumental Description

The data discussed here were obtained with a ThermoFinnigan NEPTUNE
multicollector ICP-MS, coupled to a NEW Wave UP213 laser, housed in the Plasma
Facility at the Woods Hole Oceanographic Institution. This NEPTUNE was installed in
June 2003, replacing an earlier one that had been installed in February 2002. but damaged
by the October 2002 fire in the lon Probe Facility.

The typical operating parameters of the NEPTUNE and laser are given in Table 1
(note that our techniques have evolved over time, and some carlier data may have utilized
somewhat different protocols). Currently, we aspirate clean dilute (5%) nitric acid during
the lasering, to allow solution standards to be interspersed with laser runs when needed.
The arrangement of Faraday cups, and the relevant isotopic masses that are collected, is
given in Table 2. Amplifiers are not rotated. as this rotates the Faraday (off-mass)
baselines as well. The mean raw Faraday intensities are transferred after all analyses to an
offline data reduction program (TweaKr), for the various corrections.

We have opted to run the laser at 100% power and in apertured mode. While we
could likely emplace higher energy density in focused mode, this tends to throw off’
larger chips and particles. particularly from basalt glass samples. We have not made any
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investigations of the effects of particle size on mass bias, interferences, and the like. Each
analysis takes about 6.5 minutes of lasering, including offpeak baseline integration for 64
seconds and 20 cycles of 16 second integrations (and, more recently, 40 cycles of 8
second integrations). With a 120 pm spot and 200 um long raster lines (see Table 1),
spaced at only 20 um, the final ablation pit is pyramidal, approximately 300 x 300 um,
and 250 um deep. Typically, there will be little or no drift of **Sr intensity with time
during ablation of homogeneous basalt glass standards, and the 1¢ standard deviation of
mtensity will fall in the range 5-15%.

2.2. Standards and Canonical Isotope Abundances
For Rb and Sr isotope standards, we have used NIST standards SRM984 and

SRM987. The certified values for these standards are listed in Table 3, along with the
gtto‘gg unccrlsz:gimisc(s. Note that *Rb/*'Rb in8§1{.%984 is only ccﬂiligd 10 + 423 ppm.

‘Sr/”"Sr and *°Sr/7"Sr to only 380  ppm, and ¥ S1/°"Sr 10 0.25%. It is likely that the
uncertainties in * $r/*8r and *$r/*Sr are not independent, but possibly related by some
fractionation-dependence. Note also that the certified *Sr/**Sr value is 0.1193515, not the
consent value of 0.119400 adopted by the community. We have corrected all of the SRM
987 certificate ratios, by exponential law, to be consistent with the consent value of
0.1194. Tronically, this results in a “corrected” ¥’Sr/*Sr ratio of 0.7101938. which is
lower than (but marginally within errors of) the value commonly adopted by the
community of (.710240 (which 1s itself different from the “uncorrected™ certificate value
of 0.710339). It will obviously be important for published papers to be very clear as to
their usage of SRM 987 standard values. For Kr, we adopt the isotope abundances
compiled by Ozima and Podosek (2001).

2.3. Backgrounds and Baselines

The NEPTUNE software allows a choice of baseline protocols. PIMMS users
frequently use “on-peak”™ baselines, after sample wash-out [1, 3-6]; the NEPTUNE also
allows a “defocused” beam baseline. Our experience is that baselines can be measurably
(> 50 uV) elevated across a broad mass region during actual sample analysis and thus
different from those measured in a defocused “beam-off™ state, or while running gas or
acid blanks. We have chosen therefore to adopt the common TIMS procedure of running
“off-peak” baselines while sample analysis is underway; while this consumes part of the
sample, we sce no other way to ensure reliability of baselines. (However, baselines on
Samoan basalt standards and basaltic melt inclusions do not change significantly over the
course ol an analytical session, and we have adopted the practice of applying baselines
from larger melt inclusions—run during the same analytical session—1to exceptionally
small melt inclusions to save precious material). We have chosen to measure baselines at
a position 0.70 amu below cach mass; this avoids potential baseline interferences from
doubly-charged half-mass REE peaks, allows the Faradays that are intentionally set at
83.5 and 85.5 in order to monitor these REE 1o offset 0.2 amu below mass 83 and 85
during baseline measurement, and places the *Sr cup near the minimum in the valley
between ¥'Sr and ¥¥sr during baseline measurement. With this protocol, the only baseline
that will have a significant tail contribution is ST_Sr. With the measured abundance
sensitivity at Sr mass of ~ 1ppm at 1 amu, the *’Sr/**Sr ratio will be elevated by < 12
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ppm: this error is small compared to our external precision goal. and will also be
normalized. to first order. through the use of the SRM987 standard.

2.4. Kr Correction

As is well known, there are interferences at *'Sr and **Sr masses from Kr.
Conventionally, the Kr is »ons;dercd to be a contaminant in the Ar plasma gas, and is
u)rreuted by measurement of ’Kr or **Kr. Over the past two vears of measurement here.
our ¥'Kr intensity has varied from ~ 0.05 mV to ~ 20 mV. and we believe that not all of it
comes in with the argon, nor is all of mass 83 actually Kr. Typically, after changing
samples in the laser cell, there is a component of air Kr which slowly decreases as the
chamber is purged. Ultimately, the Kr intensity with He flowing from the cell into the
machine will decrease substantially below that in aspirated solutions (because the He has
less Kr than the argon). It appears to us that there is a component of atmospheric Kr
dissolved in aspirated solutions and this contributes to the Kr background. This could be
possibly moderated by hermetically isolating the solutions from the atmosphere. Air
entrainment by the plasma at the torch is also probable, but has proven difficult to
constrain.

We have typically measured both *Kr and ¥ Kr during all Sr analyses. Deviations
of up 10 a factor of two from the canonical ®*Kr/**Kr ratio of ~ 1 are very common in
laser runs, with values most often above one, but also frequently below one (Fig. 1). Even
solution runs on the 987 standard will frequently show 10-20% deviations from a ratio of’
1. typically with the ratios being too low (interferences on mass 82). Clearly there exist
isobaric interferences that seriously hamper efforts to use either of these masses to correct
for Kr. We have adopted an alternative scheme which basically uses the most abundant
Kr isotope at mass 84 (~57%) to make the Kr correction on mass 86. This mass has a Sr
“interference™ on it, but for **Sr intensities in the 1-2 volt range, the Kr makes up 35-75%
of the mass 84 peak (i.e. the Kr and Sr are approximately equal in intensity). By
“subtracting” Kr until the **Sr/**Sr ratio equals the canonical value of 0.00675476 (while
iterating the mass-bias correction), this allows a robust correction to be made on mass 86
(there is a large crror dunagmfiuauon in this process, due to the fact that **Kr/*'Kr is -
0.30. while the ¥$r/*'Sr ratio is ~ 17. 7). Obviously, this tcuhmqug relies on the absence
of any other mgmﬁcam isobaric interferences at mass 84: in any event, these are likely to
be less fatal than those at mass 83, because of the ¥Kr fxskr ratio of ~ 5. One indication
that this calculation method is helpful is the observation that the external precision of

samples and standards run at low-intensity (1-2 volts on mass 8R) is typically improved
by 30-50%, compared to the same data corrected with *'Kr. Further discussion of isobaric
interference issues may be found in section IIF, below.

We are able to correct for Kr interferences so that elevated Kr/Sr ratios do not
noticeably diminish the prc(.lslon or accuracy of §8ass analysis while using our protocol.
provided that the 886r intensity is > 1 V and Sk 881 is < 0.004 (Table 4).
exceptionally high Kr/Sr ratios, there may be a tendency for measurement recnsion to
degrade. Therefore, analyses of unknowns that exhibit high Kr/Sr ratios (*Kr/**Sr >
0.004) are discarded.

Uncertainty in the isotopic ratios of Kr used in our c.orrection scheme does not
significantly contribute to dmmmhmg the accuracy of *’St/**Sr analyses by laser
ablation. At elevated Kr/Sr (PKr/®Sr - 0.004) —where such uncertainties will play the
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largest role in afTecting the final Kr-corrected *’Sr/*Sr ratio-—a 1% uncertainty in any or
all of the Kr-isotope ratios will change the final corrected *’Sr/**Sr ratio by <15 ppm.
Additionally, allowing the Kr-isotope ratios to fractionate by up to 2% (before or during
entry into the plasma) changes the *'Sr/*Sr by <15 ppm.

2.5. Rb Correction

The analysis of basaltic melt inclusions typically involves samples in which 20-
50% of intensity on mass 87 is due to Rb, and large Rb corrections are required. Our goal
was to devise a protocol where the Rb-corrected ¥ Sr/%Sr ratios are accurate to within a
few hundred ppm. We adopted the strategy of using natural basalt glasses (Table 5) with
precisely known ¥'Sr/%Sr ratios (obtained by TIMS) to bracket the basalt glass
unknowns; for each “standard™ glass, the *Rb*"Rb ratio required to give the TIMS
$8r/*Sr is calculated, and these bracketing ** Rb/*"Rb ratios are then used for the Rb
corrections in the unknown glasses. This method depends only on the Rb mass bias
being relatively invariant on short time scales (20 minutes). and not being a function of
the particular major element composition of the various glasses analyzed.

To assess these issues, we performed laser ablation analyses of a suite of 14
Samoan basalt glasses of known ¥ $r/*Sr, with significant variability in major and trace
element composition. The results of nine one-day analysis campaigns are shown in Fig.
2; interspersed with these laser ablation analyses during the first two days were a series of
runs on mixed 984-987 Rb-Sr solutions. While the total variability of the “Required
SRbARb” (basically the variability of the Rb mass bias factor) is substantial (2317 ppm.
excluding the 987-984 Rb-Sr solution runs), the variation with time is relatively smooth,
such that the bracketing technique will be fairly effective (note that the error on ¥'Sr due
to the Rb effect is de-magnified by a factor of ~2.59 due to the *Rb/*'Rb ratio).

Several things may be noted. First, the “empirically” determined Rb ratio in
lasered basalts has an average value of 2.58745, which is some 2100 ppm lower than the
canonical value certified for the SRM984 Rb standard (the stated uncertainty in SRM984
is £ 770 ppm). Whether this reflects the existence of natural isotope variations in Rb, or
simply an underestimate of the SRM certified value is unclear. If the former, then it will
perhaps be important to use basalt glass standards that are petrogenctically related the
unknowns. Secondly, there is a clear tendency for the Rb-Sr solution runs to lic at the
high side of the data series, averaging 2.5900 (1200 ppm lower than the canonical value
for the SRM984 Rb standard). This would suggest a slight difTerence in Rb mass bias for
solution runs versus laser ablation runs (and this would not be surprising. given the much
larger plasma loading from the laser runs).

To assess the overall accuracy of this correction scheme, we have “corrected™
cach run in two ways: first. using the contiguous bracketing runs, and secondly,
correcting each run with the global average “required™ **Rb/*’Rb ratio of 2.58745. The
resulting “corrected” ¥’Sr/**Sr ratios are then compared with the known values (note that
the internal precision of the solution runs averaged about = 10 ppm (1g, standard error);
that of the laser runs averaged +17 ppm. with 88 intensities ranging from 1-12 volts). For
the “bracketing technique™, the mean deviation (measured against TIMS) for the nine
analytical sessions is 127 ppm (320 ppm, 2o standard deviation, assuming a Gaussian
distribution); for the “global average™ technique. the mean deviation is 155 ppm (Fig. 3).
We adopt the first scheme to correct unknowns and when discussing the accuracy of
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standard glass (and melt inclusion) runs: this technique has the advantage of capturing the
downward drift of the ¥*Rb/*Rb required values over time (see Fig. 2). While obviously
not as precise as TIMS analyses, this level of reproducibility is excellent for an in situ
technique, and will allow us to embark on a realistic program of melt-inclusion analysis.

Due to the uncertainty of the **Rb/*’Rb required value, there will be an error
magnification on the corrected ¥9r/%Sr ratios of basaltic unknowns as Rb/Sr increases.
In order to model this effect, we selected several glass standard runs with different Rb/Sr
ratios and similar, low Kr/Sr ratios, and varied the **Rb/"Rb ratio by 2 standard
deviations about the mean global value of 2.58745 (+0.00278, 20 standard deviation).
The propagated error increases linearly to 630 ppm when Rb/Sr is 0.14, and the accuracy
appears to scale with the Rb/Sr such that the uncertainty in $RbA"Rb magnifies the error
on the final *’Sr/%Sr (Fig. 4). However, the “bracketing method” for the Rb correction
reduces the uncertainty in the *Rb/*’Rb required value by ~20%, so that the propagated
error from the reduced uncertainty translates to an improvement in the accuracy of the
¥Sr/*Srr (... 1o 505 ppm when Rb/Sr is 0.14). The internal precision for *’Sr/**Sr
measurements on lasered glasses is generally an order of magnitude better than the
accuracy (this is also true for the Rb/Sr measurements), and does not appear to worsen
with increasing Rb/Sr ratios. However, the intemal precision of the ¥'Sr/**Sr, but not the
accuracy, does vary with Sr intensities (Fig. 5), and, 10 a lesser extent, the number and
length (8 or 16 second integrations) of cycles of analysis. The precision on the melt
inclusion analyses also varies as a function of Sr intensity and the number and length of
cycles. However, because the accuracy of the $81/%Sr of Samoan glasses is not related
to Sr intensity over the range of 1-12 Volts on mass 88 (Table 4), somewhat lower Sr
intensities during the melt inclusion runs (1-6.5 Volts) should not afTect the overall
accuracy of ¥Sr/*Sr.

2.6. Other Interferences

We have directly measured possible isobaric mass interferences resulting from Ca
dimers and argides, Fe(),, doubly-charged Er and Yb and KrH. The Ca dimers and
argides invoke errors of less than <10 ppm, for Ca/Sr ratios typical of alkali basalts; there
is no straightforward way to monitor or correct for these. Similarly, in a typical basalt
laser run (with 500 ppm Sr), the total propagated error in ¥ Sr/*Sr from FeO, will then be
less than 40 ppm (and could be nil). Additionally, the REE "invoke errors of <30 ppm
for typical Sr/REE ratios in alkali basalts; these can in principal be corrected for by
monitoring the 83.5 and 85.5 half-mass peaks due to 'Er’” and '"'Yb™. Finally, there
seems 1o be some evidence for the formation of KrH in the plasma. with Kr/KrH
exhibiting ratios from 35-70. Kr hydrides create isobaric interferences on masses 83, 84,
85 and 87, and they may play an important role when Kr/Sr ratios are ¢levated. In
practice, however, it appears that there are frequently other unexplained interferences at
these masses, as well as at the Kr and Rb masses, so that correction for these isobaric
interferences is not always successful. These problems not only limit the attainable
precision of laser ablation analyses. but can limit the precision of straightforward Sr
solution analyses as well, even of the SRM987 standard. A continuing investigation of
these issues (and a fuller discussion of interferences from Ca dimers, argides, FeO,, KrH
and doubly charged Er and Yb) is underway (Hart et al.. in prep).
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2.7. Measurement of RbvSr by LA-ICP-AMS

Masses &5 and 88 represent pure Rb and Sr, respectively, so that fairly precise
measurement of Rb/Sr ratios can be generated. After correcting for mass fractionation
during each run, Rb/Sr ratios on Samoan basalt glasses measured by laser ablation are
accurate to 7% (1 mean deviation, compared to ratios obtained by XRF/ICP techniques
on the same glasses), and precise (0.67%, 1 mean deviation) during multiple runs on a
suite of Samoan glasses (Fig. 6). We note that this technique does not appear to work
when running a “dry” plasma: Rb and Sr are strongly fractionated from cach other. so
that the measured Rb/Sr ratios are up to 8% higher than in the standard glass (see last 4
analyses in Table 4).

2.8. Replicability

We have not yet made a comprehensive study of reproducibility of sample
analyses. We have done an analysis of a group of 50 runs on the SRM98&7 standard,
spread over a 17 month time period, using solutions varying in concentration from 10 ppb
to 600 ppb. All errors discussed here will be given at the 16 level. Considering first the
200 and 600 ppb solutions, the average internal precision for these was 7 ppm (for *Sr
intensitics varying from 8-28 volts). The average external precision. calculated from the
variations within a single day’s analvsis session, was 12 ppm (and the number of
standards run during each of these sessions varied from 2-6). While the overall ratio of
external to intemal precision was ~1.8, there was not a significant correlation between
external and internal precision on a session-to-session basis (i.c. the internal precision on
individual runs is not a good guide to the expected external precision). For the daily
means of 11 sessions over the 17 month time period. the average *'Sr™*Sr was 0.710255,
with a 1 standard deviation of a single analysis of 15 ppm. We should note that this time
period involved a number of different baseline protocols and cup configurations, so the
statistics may not be representative of our current procedures. There is one obvious
conclusion, however, and that is that the precision on a daily basis is similar to the long-
term precision; in other words, the variability in standard runs has almost as much “daily™
scatter as it does “vearly” scatter.

Within this data set. there is a fair correlation between Sr intensity and the
precision of the data; external precision for a given session is = 5 ppm for >25 volt data,
+7-20 ppm for 9-15 volt data and +50-80 ppm for 0.3-1 volt data. Overall, the 1g external
precision in ggm. as a function of ®¥8r mtensity in volts, may be empirically expressed as:
~ | 80/(volts) ™).

3. Summary

The Finnigan NEPTUNE multi-collector ICP-MS has proven to be an excellent
instrument for developing robust Sr isotope analysis protocols. Among its advantages are
the stability of the Faraday-amplificr system. the ability to run with intensities up to 50
volts, and the stability of the mass bias for Sr and Rb. While the external precision of
solution analyses are not yet comparable to the best TIMS techniques, the in situ laser
ablation technique appears to be a reliable and very promising tool for the study of small
scale-length isotopic heterogeneities, even in samples with a significant Rb component.
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Figure Captions

Fig. 1. Variation of intensity ratio of mass 82 to mass 83 over time. Series of Samoan
basalt glasses analyzed by laser ablation (colored symbols) and mixed Sr-Rb standard
solutions (SRM987-SRM984. black diamonds). The certificate value for ¥*Kr/*Kr is
1.004. We observe no relationship between mass 82/mass 83 and the precision or
accuracy of ¥'Sr/%Sr measurement by LA-MC-ICPMS.

Fig. 2. SRbARb ratio required to give correct 'Sr*8r of a series of Samoan basalt
glasses (analyzed by TIMS, open diamonds) and mixed Sr-Rb standard solutions
(SRM987-SRM984, filled diamonds). The certificate value for *Rb/*'Rb in SRM984 is
2.593 1+ 0.002: all of the “calculated” Rb ratios are lower than the certificate value, and
outside quoted error limits. Runs using a dry plasma not shown.

Fig. 3. Reproducibility of *’St/**Sr for 12 Samoan basalt glass standards (with known
878r/8GSr by TIMS) by LA-MC-ICPMS. Two data trends represent reproducibility
(external precision) using the “global average™ and the “bracketing” correction schemes
for the isobaric interference of Rb on mass 87. The bracketing method gives better
overall external precision, and is adopted as the correction scheme in the manuscript.
Mixed NBS987 and NBS984 solution runs not included in the figure. The downward
drift of *Rb/*"Rb (see Fig. 2) is noted in the downward drift of error using the “global
average” Rb correction scheme. Error bars on symbols are internal (in-run) precision (2
mean deviations). Dashed lines mark external precision of +320 ppm (20, standard
deviation). Larger scatter in later runs is due to higher Rb/Sr ratios of the glass standards
analvzed. Better external precision in early runs is due to smaller variation in ¥ Rb/*'Rb
over time. The glass standard runs at the beginning and the end of each analytical session
are not correctible using the bracketing technique and are not plotted. However, all glass
standards are correctible using the “global average™ Rb correction scheme. so more data
points are plotted for this latter correction scheme.

Fig. 4. Rb/Sr vs. propagated error on ¥Sr%Sr measurement due to uncertainty of the
$*Rb/¥Rb required value. The average ¥*Rb¥Rb required values (used for correcting
the ¥'Rb isobaric interference on ¥Sr) during all laser runs on Samoan glass standards 1s
2.58745 (+0.00278, 20), and this uncertainty generates larger errors on the final ¥'Sr/*Sr
at higher Rb/Sr ratios. The upper model line shows the error (26, standard deviation) on
final *'Sr/*S$r ratio when using the “global average” technique for the Rb correction (see
text for description). Symbols on line represent error propagation on (from the
uncertainty on the **Rb/*’Rb) using actual basalt analyses by laser ablation.
Alternatively, error using the “bracketing” method for the Rb correction is 20% lower,
and is described by the lower line. The Rb correction contributes the vast majority of the
error on the final *’Sr/*Sr in our protocol for measuring basal glasses by LA-MC-
ICPMS. Therefore, we consider the lower model curve to be a good approximation of
the reproducibility of our method.
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Fig. 5. Relationship between intensity on mass 88 and internal precision during laser
ablation analysis of Samoan glass standards. Various Neptune and laser operating
conditions and variations in basalt and plasma chemistry, inclusing Rb/Sr and Kr/Sr,
show little or no relationship with measurement precision. The curve models the
relationship between intensity and internal precision (1 mean deviation), and is described
by the following relationship: Precision -~ 45*(VIntensity)/Intensity.

Fig. 6. Samoan glass Rb/Sr measured by LA-MC-ICPMS Neptune plotted against Rb/Sr
measured by standard techniques (XRF or ICP) on powders of the same glasses. Error
bars (20 standard deviation from the mean of measured values) are shown on samples
with at least 9 laser analyses. All other glasses had one or two analyses. One-to-one line
1s solid, and weighted least squares regression (including equation) is dashed.
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Table 1. Typical NEPTUNE and Laser Operating Parameters

RF Power

Argon cooling gas, flow rate
Ar auxiliary gas, flow rate
He sample gas, flow rate
Interface cones

Mass analyzer pressure
Resolution mode
Abundance sensitivity
Detection system

Signal analysis set-up
BRackground-baseline protocol
Nehuliser and uptake rate
Spray chamber

Sensitivity, solution Sr

Sensitivity, laser Sr

Laser type
Carrier gas
Beam optics
Spot s1ze
Raster pattern
Pulse rate
Power setting
Power delivered
Pre-ablation

1200 W

15L/min

0.8 L/min

0.5 L/min

X-cones

5x10” mbar

Low (400)

-- 1 ppm at -1 amu. mass 88 (RPQ off)

Faraday cups (9)

8 sec or 16 sec integration/cycle. 40 or 20 cycles

1 min integration pre-analysis. -0.7 amu all Faradays
Elemental Scientific, Inc., PFA 20-50 microhiters per minute
Elemental Scientific, Inc . Stable Introduction System (SIS)
75 V S per ppm Sr in 5% HNO,

-1 volt ®sr per 100 ppm Sr in basalt at | m)

New Wave UP213, quad Nd YAG 213 nm

Hehum

Apertured mode

120 um (60 um or less in high-Sr carbonates)

200 x 200 um, 20 um line spacing, 4 um/sec

20 Hz

100% (lower for high-Sr carbonates)

~1.0-13my

same raster and spot size, S Hz, 45% power, 30 um/sec

46




[Table 2. Faraday Cup Configuration|

Laser Ablation Sr Isotope Analysis
Cup Mass
H4 88
H3 87
H2 86
H1 85
C 84
L1 83
L2 82.5
L3 82
L4 81.5
Centered for Sr amu; C ~ 83.913
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Table 3. Adopted Isotopic Abundances.

Krypton Isotopic Abunance
78 0.003469
80 0.02257
82 0.11523
83 0.11477
84 0.56998
86 0.17398

From Ozima and Podosek, 2001

Strontium SRM887 Isotopic Abundance™ Isotopic Abundance*

84 0.005578 0.005574

86 0.088600 0.088566

87 0.070029 0.070015

88 0.825793 0.825845

Isotopic Ratios** Isotopic Ratios"

84/86 0.056573 0.056549 +2529
87/86 0.710194 0.710339 1367
88/86 8.375209 8.37861 +388
84/88 0.006755 0.006749 12529
86/88 0.118400 0.118352 1388

"NIST Certificate Values for SRM987 with quoted uncertainties.
"*Renormalized to 0.1194 using exponential law; this value has been used by

community consensus for decades. The corresponding ¥ sr/*sr value adopted by
most of the community is 0.71024.

Rubidium SRM984

85 0.72168
87 0.27832
86/87* 2593 1771 ppm

*NIST Certificate Values for SRM984, with quoted uncertainties.

ppm
ppm
ppm
ppm
ppm
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Table 5. Compositions of Samoan glasses (“standards”) used in determining"Rb"™ Rb required values in this study.
ilass Nan  76-8 7841 78-8 76-13 75-10 63-13 70-1 71-11 71-22 72-2 73-1 73-12 712 68-3

Vol¢ano Malumalu Malumalu Malumalu Malumaly  Tau  Valulv'v Vailulv'y Valuld'y Valulu's Vailul's Vailuluu Vailule'y Vailuiv's Vailulu'v
Si1/81 0706374 0708888 0 707613 0 706395 0.704533 0 708820 0 705371 0.705394 0.705473 0.705395 0 706720 0.708683 0705943 0 705388

Sio, 4704 4554 4733 4835 4710 4718 4757 4757 452 4553 4714 4710 4385 4T ®d
AL,O) 1389 8.94 1419 1355 16.29 14.76 1363 13.71 813 1410 13.97 2,07 6837 1186
Tio, 388 1.96 329 388 402 301 201 275 168 331 280 248 144 255
FeO" 11.93 11.89 1145 1278 12.66 1159 1144 10 84 1077 1213 11.26 102 1080 1051
MnO 018 017 017 020 020 DR LRE 018 017 RL] RE:] 018 017 017
Ca0 1186 823 1147 1180 211 1237 1305 1272 989 1188 1293 12 80 807 1278
MaO 627 19 68 8393 6847 518 B 57 756 B 60 2179 856 752 170 27 44 10 68
K,0 192 14 205 194 146 128 0es 115 067 140 137 115 059 099
Na,0 275 1.92 274 281 347 272 235 235 129 254 250 202 111 236
P,05 049 27 040 049 0863 037 034 033 020 037 034 02 0.17 029
Pre-total .27 10027 9974 9012 9058  99.01 98.81 974 9871 9839 9910  990.13 9850 99.49
Ni 85 616 97 kil 5 59 57 135 778 110 79 221 1080 285
cr 137 1289 106 130 15 110 o8 316 1667 227 202 768 2141 22
v 356 184 342 384 282 338 338 324 212 367 2% 2895 177 300
Ga 2 14 21 26 28 20 2 19 14 23 14 17 9 20
Cu 2 49 7! 95 2 58 82 91 156 79 70 59 138 82
n 21 102 104 126 140 a5 92 92 78 102 96 77 i 89
Cs 051 0.39 0850 06 0.38 D28 oNn 034 021 038 038 0.31 019 030
Rb 443 418 514 428 276 336 25.0 304 190 293 3681 304 169 266
Ba 358 286 372 31 264 279 203 247 149 287 347 282 128 218
™ G4 60 63 53 49 52 4.2 44 268 5.0 6.1 49 23 4.0
u 130 105 136 129 110 107 0¢3 D85 058 111 115 087 048 087
Nb 567 kN 590 575 513 451 s 405 247 475 a8 7 3R/2 207 3R 4
Ta 28 26 38 38 36 34 2.5 28 16 32 31 25 14 25
La 48 4 394 52 488 431 374 310 329 202 383 44 2 381 171 203
Ce 959 730 988 9 3 905 744 850 858 404 78.3 838 688 44 587
PL 42 42 48 2 33 2, 22 23 18 2.5 48 82 1.3 2.
Pr 1.2 79 115 1.8 1.1 8.7 78 78 47 9.1 94 78 4.0 6.9
Nd 463 310 442 T2 480 354 35 316 180 37.2 360 302 165 285
sr o4 333 529 564 617 470 420 4 267 492 473 g8 24 38/
Zr 276 183 266 81 327 218 188 186 117 21 212 177 98 168
Hf 7.2 47 64 7 83 58 54 §2 31 59 58 48 28 44
sm 105 65 9.1 102 116 78 7 73 44 B4 78 67 37 65
Eu 2 19 2.5 29 38 25 2.3 23 14 2.8 24 2.1 % 2.
Gd 95 58 80 91 107 A 68 64 39 7.3 68 60 2 58
T 14 08 11 13 16 11 10 10 06 19 11 09 05 09
Dy 74 44 58 66 98 59 7 54 33 6.0 56 50 T 498
Ho 13 08 1.0 1.2 186 1.1 1.0 10 08 LA 10 08 Q5 0.9
Y N2 198 305 331 402 275 264 259 156 293 273 235 128 225
Er 30 18 25 28 38 27 25 24 14 27 25 22 12 21
Tm 038 023 033 037 050 035 033 032 019 035 033 028 018 028
Yb 2 124 197 213 280 202 187 183 111 202 190 164 D8/7 163
Lu 029 019 029 031 040 0.30 027 0.27 016 0.28 0.28 0.23 0.13 024
Sc 31.0 282 285 280 208 334 4198 382 360 38.0 381 427 208 408
st ound in [7]. or element data normalized 1o 100%. ass s s names have the prefix i
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Chapter 2

The return of subducted continental crust in
Samoan lavas*

Abstract

Substantial quantities of terrigenous sediments are known to enter the mantle at
subduction zones, but little is known about their fate in the mantle'. Subducted sediment
may be entrained in buoyantly upwelling plumes and returned to the Earth’s surface at
hotspotsz’s, but the proportion of recycled sediment in the mantle is small, and clear
examples of recycled sediment in hotspot lavas are rare®’. Here we report remarkably
enriched *’St/*°Sr and " Nd/"**Nd isotope signatures in Samoan lavas from three dredge
locations on the underwater flanks of Savai’i island, Western Samoa. The submarine
Savai’i lavas represent the most extreme *’Sr/**Sr isotope compositions reported for
ocean island basalts to date. The data are consistent with the presence of a recycled
sediment component (with a composition similar to the upper continental crust) in the
Samoan mantle. Trace-element data show affinities similar to those of the upper
continental crust—including exceptionally low Ce/Pb and Nb/U ratios"—that
complement the enriched ¥'Sr/*Sr and "*Nd/'*Nd isotope signatures. The geochemical
evidence from these Samoan lavas significantly redefines the composition of the EM2
(enriched mantle 2; ref. 9) mantle endmember, and points to the presence of an ancient
recycled upper continental crust component in the Samoan mantle plume.

*Published as: M. G. Jackson, S. R. Hart, A. A. P. Koppers, H. Staudigel, J. Konter, J.
Blusztajn, M. Kurz and J. A. Russell, The return of subducted continental crust in
Samoan lavas, Nature, v. 448, pp. 684-687, 2007, doi: 10.1038/nature06048.
Reprinted by permission from Macmillan Publishers Ltd: Nature, copyright 2007.

61



natre

LETTE

Vol 448 9 Auguet 2007 doir10.1038/nature06048

The return of subducted continental crust in

Samoan lavas

Matthew G. Jackson', Stanley R. Hart’, Anthony A. P. Koppers ', Hubert Staudigel’, Jasper Konter’,

Jerzy Blusztajn ', Mark Kurz' & Jamie A. Russell’

Substantial quantitics of terrigenous sediments are known to enter
the mantle atsubduction zones, but little is knowa about their Gae
in themantle'. Subducted sediment may be entrained in buoyamly
upwelling plumes and returned to the Farth's surface at
hotspots” ', but the proportion of recycled sediment in the mantle
is small, and clear examples of recvcled sediment in Imls‘[:n lavas
are rare®”. Here we report remarkably enriched 'St/ Sr and
"IN/ YNd isotope signatures in Samoan lavas from three dredge
locations on the underwater flanks of Sa island, Western
Samoa. The submarine Savai'i lavas represent the most extreme
Se/sr wotope compositions reported for occan island basalts
to date. The data are consistent with the presence of a recycled
sediment component (with a composition similar to the upper
continental crust) in the Samoan mantle. Trace-element data
show affinities similar to those of the upper continental crust—
including exceptionally low Ce/Ph and Nbh/U ratios™—that
complement the enriched *’St/**Sr and "“Nd/'"'Nd isotope sig-
natures. The geochemical evidence from these Samoan lavas sig-
nificantly redefines the composition of the EM2 (enriched mantle
2 ref. 9) mantle endmember, and points to the presence of an
ancient recycled upper continental crust component the
Samoan mantle plume.

The Earth’s mantle, as sampled by ocean island basalts crupted at
hotspots, ¢

chemically and sotopicdly heterogencous. However, the
origin ot the geochemical heterogeneity of the mantle 15 not well
understood. One madel for the geachemical evolution of the mantle
assumes that much ofthe chemical diversity is a result of subduction,
& tectonic process that introduces entiched oceanic crust and com-
positionally heterogeneous sediment into a4 largely primitive (or
slightly depleted: mantle™*''. Following subduction, these surfuce
materials mix with a peridotitic mantle, thus imprinting their
enriched chemical and isotopic signatures on its various domains.
A number ot isotopically distinet geochemical reserverrs, as sampled
by ocean wisland basalts, have resulted trom this process. The isotopic
endmembers are often referred to us HIMU (high o — e DT
EN cenriched mantle 1: and ENM2 (enriched mantle 27 and DNM
1 Ill‘p]\“l‘i "li(l‘lK'Elll'(i‘Ig(‘ l‘d\.ll( nl-lllll(': ). l\hll('\lgll VI“' most |.“|i|¥-
genic Pb isotope ratios abserved in the HIMU component have been
proposed ta result from a contribution of recycled oceanic crust” ',
most models for the creation of the EM1 and ENI2 mantle reservoirs
invake a small portion of lithologically distinet sediments that have
been recycled into the mantle™'.

The volcanically active Samoan islands and seamounts define a
hotspot track with a classical EM2 pedigree™ ', The first high-
precision #Se/%°S1 and "NA/MYNd measurements from Samoan
lavas were interpreted as evidence of sediment recycling”. Recently,

ate =n
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Calfoma 2 lolla,

San D ego
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however, the proposed recveled sediment origin of the enrichied
Samoan basalis - has - been questioned (see Supplementary
Discusston, and an alternative model favouring source enrichment
by metasomatic processes was proposed . The extreme isotopic and
chemical enrichment in the new Samoan UM 2 lavas exhibit distinaly
continental fingerpnnts, and argue tor a rale tor a component similar
toanaent recycled upper continental crust (UCC m the Sumoan
plume tsee Supplementary [iscussion tor the ALIA 2005 auise
dredge locations and geachemical datat

The most isotopically enriched Samoan whole-rock *Si/™Sr sig-
nature (0.720469, Mg# =572t is rccorded n a trachyandesite,

dredge sample D115-2

1. which was taken from the southwestern
flank of Savai'i. Chnopyraxene mineral separates from the same
sample vielded an even higher ™SSt ratio €0.7216301. A trachy-
basalt  (D115-18: the S5y
10718592, Mg* — 38.7, and cliropyroxene mineral separates lrom
the sample also gave more enniched ratios (0.720232-0.72083401. Six

o,

hosts sccond-most-enriched

other lavas recovered in the same dredge also exhibit enriched
S Sr ratios (0.708173-0.716394, Ng? = 32.0-63.11. Diedge
D118, located on the far western end of the Savai'i lincament, con-
tained an alkali basalt wath enriched “Se/%Sr 10.710337, measurced
on fresh clinopyroxene:. Dredge D128, taken on the northeastern
Nlanks of Savar's, yiclded a transitional basalt with a high *S1/*°§r
tatio (0.712300, Mg# = 7051 and several other basalts with less
enniched “SE*Sr (0.706397-0.708170, Mg# = 61.2-63.9.. Dredge
D114, taken on the southwestern flanks of Savai'y, provided vounger
shield basalts of transitional chemistry and normal 'si/*s;
10.705422-0.705435, M= = 67.2 and 76.31.

The “SrASr isotopes in the basalts from all three cltra-enriched
sampling  localitites  are complemented by enriched  {Jow:
YNNG and the lowest e 'He ratios (4. 31-4 93 Ra, or ratia
1o atmosphere! observed in Samoan basalts. Together, the new data
extend the Samoan isotope airay Lo ¢ region outside the global coean
island basalt field (Fig. 1. Highly ennched EM2 signatures have
previously been observed only in metasomatized xenoliths from
Savai't (7St/"Sr up o 0.712838; ref. 1o), and the Samoan EM2
basalts provide the finst evidence that the enriched component hosted
in these xenoliths also ocaurs as crupted basalts. The enriched
FSr* S and "UNd/™MNG isotope ratios, coupled with the low
*He/*He, are consistent with a recyded UCC component in the man-
tle source of the Samoan EM2 basalts

The UCC reservoir exhibits several diagnostic trace-element char
acteristics that can be useful for detecting its presence in Samoan
EM2 lavas. Compared to ocean island basalt and mid-ocean-ridge
basalt lavas, UCC displays exceptional depletion in Nb tand Ta),
Ti and Eu, and cnrichment in Pb (Fig. 21, Samoan basalts have
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Figure 1 %7Sr/%Sr and "*'Nd/™*Nd isotopa ratios of new anriched
Samoan lavas. [he values are compared with other Samoan shicld basalts’,
global ocean island basalt compositions and GLOSY (global subducting
sediment}. Analvses in which whole-rock 1w powders and cinopyroxene
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muodel mixing line between depleted | perdotite and UCC (s marked at
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hypothetical UCC muxang endmember lies outside the higure. Approximately
3% UCC is required to produce the spidergram of sample D115-18 (see
Supplementary Discussion ), and 6" is required to gencrate the "5 %8
and 'UNW N i D521

trace-clement characteristics that are increasingly similar to UCC
with more enriched “Sr*°Sr and "Nd/'Y'Nd values (Fig. 3.
Although the most sotopically depleted basalts from Samoa show
shight positive anomalies in Nb and Ti, the magnitude of these
anomalies decreases monotonically towards the most enriched
Samoan ENM?2 basalts. Similarly. a correlation exists between greater
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Figure 2 Primitive-mantlc-normalized®” trace-clement pattems for the
Samoan EM2 endmember. The EM2 spidergram is the most votopically
enriched Samoan lava, sample D1153-21 ("8e/*Se 0720169, Mgz 570,
The other mantle endmembers (corrected to Mg# numbers of 60 62} and
UCC are plotted for compacison. Similar to UCC, the Samoan EM2 lava
exhibits large negative Lrand Nb ad La) anomalies and an excess ot b
tand K},

P enrichment and increasing isotopic entichment m Samoun
basalts. Importantly, the Fu anomaly is increasingly negative in the
mostisotopically enriched Samoan EM2 lavas (excluding basalts with
MgQ < 6.5 wt®n), and the Rb/Stand U/Pb are too low in the lower
(or middle’ continental crust'” to be consistent with the new Samaoan
Srand Pbisotope data; these observations rule out the involvement of
lower (or middle! continental crust. Furthermore, rare xenoliths
with enriched *"Sr/**Sr and "*Nd/'*'Nd from the subcontinental
lithospheric mantle® suggest that this mantle domain can be isotopi-
cally enriched. However, the subcontinental lithospheric mantle does
not appear o exhibit the trace-clement anonialies obseived in the
most isotopically enriched Samoan lavas'®. Instead. 1sotope ratios

A by Figure 3 ®7Sr/®*Sr and "*'Nd/"**Nd ratios
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and trace-element anomalies « Nb, Ti, Fu and Phiin Samean hasaits
generate arrays that trend owands 4 composition stmlar to UCC,

We can exdude a shallow angin for the anomalous enrichment
absersed m the Samoan FNE Livas, Owimg to the close proxinity ol
the Tonga trench. located wnly 120 km south of Savai's, rapid cveling
of sediment trom the subdiction zone mto the Samoan plume was
proposed iy amechanism for generating the extreme isotopic enrich-
ment m Samoan lavas'’. However, at the time that the submarnine

Savai't lanvas were erupted 5 Myrago™, plate reconstructions indicate

1,200 km
1o the west of Savai’t (rel. 191, and sediment input trom the Tonga
trench can he ruled out as a source ot enrichment in these lavas.

Exvidence trom Ph isotopes suggests that it is unlikely that shallow-
level contimination by madem marine sediments is responsible
tor the isotopic enrichment o the Samean EM2 basalts, [n
ATPLPL AP PL isotope space, Samoan basalts and glo-
bal marine sediments' exhibit non-overlapping ticlds with diverging
tends (Fig. 40 Moreover, three composite cores taken from the
Samoun region, and a single fertomanganese crust from the tanks
i i, plot in the global marine sediment field aned exhibit no
geochemical relatiomshup with the extremely ennched Samoan lavas,
[t s also unlikely that the Samoan plame bas been comaminated by
stranded continental crast, such as was found beneath the Kerguelen
platcaw™ and the southern Mid-Atlantic Ridge*, or by ancient lime-
stone blocks like those discovered in the Romanche fracture zone™
The tectonic history of the Samoan region places it neither at the
locus of continental rifting, which was responsible for the marooned
Kerguelen and southern Atlantic continental hlocks, nor in prox
wnty to any Padilic fracture zones™

Large quantities of sediment derived from UCC have entered the
mantle at subduction zones aver geologic time', and such a reservoir
1s ideally suited as an enriched source for the S, .lmmn plumn The
array tormed by the Samaoan EM2 basalts in "N/ 'Nd=""Se5 8¢
sotope space is anchored on the depleted end by b.;s.nlh from

that the northern termunus of the Tonga trench was located
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Fimre 4 APbisotope compositions of Samoan lavas and marine sediment

indieate that the S EM2 lavas are not contaminated with
modcm marine sediment. Samoan basalts show no overlap with occanic
sedimaents contnbuting to GLOSS' (purple squarcs, where the GLOSS
average compaosition is represented by a green crossed ‘average’ square,
<omposite sections from three sediment cores taken in the Samoan region
(blue cirdes), and a Samoan ferrom rind (blue di d;. Pb-
isotope data for mantle endinembers DMM (using data from mid-ocean
ridge basalt normal segments, as defined and catalogued by ref. 28}, EM1
(Pitcairn}, and HIMU (Mangaia and Tubuai} are from the literature (see
Supplementary [nformation for reference citations). The use of APb isatope
notation®” o identify sediment components in ocean island bacalte ic
discussed clsewhere™. All Samoan data shown arc determined using a high-
precision Tlspike protocal”.

686

NATURE Ve 44210 Augast 2007

1, one of the voungest, easternmaost Samaoan islands. The
Ll

PENA NG S0 S arnay suggests mixing between this dommant,
shightly depleted Tau component and a rare, ennichad component

that exlubis sotope and 1

~element charnteristios sl

UCC. The proportion of the enriched component in the Samoan
EM2 lavas can be estimated by caleulating trace-clement concentra-
tions ie the depleted Ta'u mantle and mixing this composiion with
UCC isee Supplementan: Discussion . A contribution of 3% UCC 1o
the depleted Ta'u mantle generates a composition that, after nuxing
and melting, produces a trace-dlement pattern man to that
uh\rr\crl in Samoan EM2 sample DIL3-18 (with S8 of

7185921, Fixing the propuitions ol the depleted and U Lompo-
mmsmlh‘ Samoean EM2 source in this way then defines the ™ Sr 7Sy
and "UNAMYING isotopic compaosition of this matersal as 0.7421 and
0.5117, respectively, The most isotopically enniched Samaoan lavas

S8 than the n v:'.u,‘ continental crust |n|un cdd from
smlundul river sediments ¥ St 0.716; ref. 24+ and global
marine sediments (- 07173 rtl‘ l’. 'Jl\l\‘b that are bi.:awi towards
voungen continental coust. However, composites of directy sampled
ancient continental shield rocks show isotopially enriched compo-
sitions™ that bracket the calaulated composttion of the recveled UCC
sediment in the Samoan mante. The new ultta-enriched EM2
lavas suggest an unusually enniched recvded prowlith in the
Samoan mantle.

Despite the large volumes of sediment entering the mantle at sub-
duction zones cestimated at 0.3-0 7 km'ver Yiret 10, Otapie s1igna-
tures associated with recveled UCC are rare inocean island basalts™
This enniched component is also uncommeon i the Samean plume,
where the highly ennched Samoan ENM2 Liva D115-18 is calculated to
have only 5% recvaed UCC (and 95% depleted Ta'u source), and
90% ot the remaining Samaoan basalts exhibiv depleted "™ *Nd/"™*Nd
ratios +0.512638 1. In additon to being rare in other ocean island
basalts, recvcled may exist in low abundance in the Samoan
plume. The reason for this may be that most subducted sediment
melts and is rapidly returned 1o the surface in subduction zone vol-
canves, or 1s sumply scraped oft onto the torearc and 1s never sub-
ducted. Alternatively, i a significant portion of UCC has been
subducted over the past 4 Gyr 10.5-0.7km'vr '¢ and has survived
subduction zone melting, the resulting accumulated reservoir in the
mantle will constitute only ~0.15% of its mass. Such a small reservoir
may be diluted by the ambient mande after convective stitting, o
mechanism that  officiently  attenuates mantle  heterogeneities.
Therefore, recvcled crustal signatures can be greatly diluted and dit-
ftcult o detect. By contrast. the recycled UCC component in the
Samoan plume is an anomalous sutvivor in a chaotic mantle.

have higher
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SUPPLEMENTARY INFORMATION

Contents of Supplementary Information (in a merged PDF titled jacksonsuppintfo.pdf:
Size: 0.7 MB total):

1. Supplementary Discussion

2. Supplementary Figure 1 and caption
3. Supplementary Figure 2 and caption
4. Supplementary Figure 3 and caption
5. Supplementary Figure 4 and caption
6. Supplementary Table 1

7. Supplementary Table 2

8. Supplementary Table 3

The file contains a Supplementary Discussion that gives a model of the Samoan EM2
source. including calculations and assumptions. The file also contains a Supplementary
Table 1 and a Supplementary Table 2 that together provide the model parameters used to
calculate the depleted Ta'u and EM2 Samoan sources, respectivelv. The file also
contains a Supplementary Table 3 that provides the new Samoan geochemical data. Four
supplementary figures also are included in the file: Supplementary Figure 1 shows new
helium isotope data from the remarkably enriched Samoan lavas: Supplementary Figure 2
is an expanded view of main text Figure 1. and shows the composition of the Samoan
lavas in the context of individual samples from the upper continental crust:
Supplementary Figure 3 compares the spidergram of a model melt of the EM2 source
with the spidergram of an isotopically-enriched Samoan EM2 lava. Supplementary
Figure 4 provides a model that explains the correlation between Si0; and *'St/*Sr in
lavas from dredge ALIA D115,
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1. Supplementary Discussion

Recycled UCC in the Samoan EM2 mantle. The standard model for the genesis of the
EM2 reservoir suggests a role for recycled sediment, probably terrigenous in origin'”’.
However, a number of problems with the standard model were outlined in ref. 8, and an
alternative origin of the Samoan EM2 source (recycled. metasomatized lithosphere) was
proposed. In light of the remarkably enriched Samoan lavas presented in this paper, we
reconsider the arguments against a recycled terrigenous component in the EM2 plume.
We demonstrate that recycled upper continental crust (UCC) can have an important role
in the origin of the EM2 source. However, we maintain that it is (most likely) not “upper
continental crust™ (UCC) that is being recycled. but sediment with a composition
resembling that of UCC. While the sediment recycling model presented here does not
invalidate the metasomatic model for the lavas presented carlier®, the new lavas presented
in this study are consistent with a recycled sediment component.

The problems with recycled marine sediment in the Samoan EM2 mantle source
(as outlined in ref. 8) are as follows. The variation in 705/ 0s in Samoan lavas is not
consistent with mixing between recycled marine sediment and depleted MORB mantle
(DMM). Such a scenario would require 35% marine sediment in the EM2 source, a
quantity not observed in the trace element patterns of Samoan basalts. Additionally, the
smooth trace element spidergrams observed in Samoan EM2 lavas were suggested to be
inconsistent with a sediment component in the Samoan EM2 source. This is because,
unlike Samoan EM2 lavas presented earlier’, marine sediments exhibit “jagged”
spidergrams, marked by large negative anomalies for Nb (and Ta), Ti and Eu and large

positive anomalies for Pb (and K). It was also noted that EM2 lavas exhibit negative Ba-

www.nature.com/nature 2
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anomalies. a feature not characteristic of marine sediments®. Furthermore. because EM2
lavas exhibit high *He/'He ratios (-8 Ra. ratio to atmosphere, or ~1.4~10°), a trait not
shared with the low *He/'He ratios in sediments (0.05-1 Ra)’ and continental crust (0.007
Ra)'®, it was suggested that the Samoan EM2 source does not host a sediment
component®. Finally, Pb-isotope composition of modern marine sediment was observed
to be unsuitable as an endmember for the enriched Samoan basalts®: Modern marine

08131, 20 . L 206 2
2%%p/***Ph ratios that are too low at a given *Pb/*'Pb 10 serve as

sediments exhibit
mixing endmembers for the Samoan EM2 lavas.

Below, we suggest that, instead of a marine sediment composition such as
GLOSS (Global Subducting Sediment''). sediment with a composition like UCC (a
composition here approximated by UCC from ref. 12) is more suitable for generating a
source sampled by the most isotopically-enriched Samoan lavas. A small portion (--5%)
of (sediment with the composition of) UCC mixed with a depleted Samoan plume
component generates a peridotite that. when melted, produces a spidergram similar to that
observed in the most isotopically-enriched Samoan lavas. Like Samoan EM2 lavas. UCC
exhibits a negative Ba anomaly, a feature not shared with GLOSS"'. Furthermore,
published Os-isotopes® in enriched Samoan EM2 lavas are not inconsistent with a UCC
component in the plume. The Os-isotope signature in Samoan basalts is not likely a
result of mixing between DMM ('¥°0s/'%0s = 0.125) and marine sediment; however, a
mixture of UCC ('¥'0s/*%0s = 1.05, [Os] = 30 ppl”) and a depleted Samoan plume
component generates a mixing trend that describes the Os-isotope data for Samoan shield
basalts (excluding samples with <100 ppt Os. and assuming measurement precision of

+1.5% in data from ref. 8). This mixing scenario uses measured Ta'u "¥'0s/"**0s ratios
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of 0.129% and assumes that the Ta’u peridotite source also has Os concentrations that are
depleted relative to primitive mantle (>3.900 ppt'*). Moreover, new helium isotope data
for Samoan EM2 lavas exhibit low ratios (<5 Ra) that plot on a trajectory that trends to
UCC, and are consistent with the existence of a recyeled UCC component in the Samoan
plume (Supplementary Figure 1). Finally, our model for the formation of the EM2
mantle agrees with Pb-isotope constraints. UCC exhibits a large range of Pb-isotope
values, and the Samoan EM2 lavas exhibit Pb-isotope values that plot in the field
previously defined for UCC",
Model for the EM2 source. In order to model the generation of the mantle source
sampled by the new Samoan EM2 lavas, we take advantage of the array formed by
Samoan basalts in ¥ Sr*Sr-"*Nd/'*'Nd isotope space. The array suggests that the most
enriched Samoan basalts were formed as products of mantle-mixing between a depleted
component (here represented by the mantle source sampled by the isotopically-depleted
and remarkably homogeneous lavas from Ta'u island) and a component similar to UCC
(Supplementary Figure 2). In order to determine the proportion of UCC in the Samoan
plume, we first calculate a trace element peridotite source for the depleted Ta'u
endmember that is consistent with the radiogenic isotopes of Nd, Hf, Sr and Pb. We then
determine the amount of UCC that must be added to the depleted Ta’u peridotite source
50 that the final mixture, an enriched peridotite, can be melted to generate a spidergram
similar to the new Samoan EM2 lavas.

In the following modeling exercise, we generate a model for the EM2 source that
describes the array formed by the most isotopically-enriched submarine Savai’i lavas

from dredge D115, and we make no attempt to model the other components previously
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identified® in lavas from the Samoan hotspol. We emphasize that the model is just one
possible model that is consistent with the isotopes and trace elements in Samoan EM2
lavas. The model is presented only to demonstrate that recycling sediment into Samoan
EM2 lavas is possible.

Composition of the depleted Ta'u peridotite source. Following ref. 8, we generate an
average olivine fractionation corrected trace element budget for Ta'u lavas
(Supplementary Figure 3 and Supplementary Table 1). In order to determine a trace
¢lement mantle source sampled by the average Ta’u lava composition, we first assume a
peridotite source lithology. an aggregated fractional melting model. and we adopt
mineral-melt partition coefticients from ref. 16 (Supplementary Table 1). We also
assume a two-stage isotope model for the evolution of the depleted Ta’u source. and that
this differentiation event of a primitive mantle composition occurred at 1.8 Ga. This age
is commonly quoted as the average mantle differentiation age’ . and is an age that is
consistent with the array formed by Ta'u lavas in **'Pb”*'Pb vs. *°Pb/*"'Pb isotope space

(see Fig. 7in rel. 8). Given these assumptions, a Ta’u source is calculated so that parent-

(Ta’u average is 0.512789%) and "*HP' "Hf (Ta'u average is 0.282987'%) isotopes
measured in Ta'u lavas given the two-stage isotope model. The Ta’u source is not very
sensitive to its age of formation: ages of 1.0-2.5 Ga require only small variations in
melting—4.5 1o 5.5%--t0 generate the average Ta’u lava. However. assuming a
formation age of 1.8 Ga, a 5.1% melt (with ~50.6% gamet melting) of the hypothetical
Ta’u source will generate a model melt with a spidergram that is both identical to the

average measured Ta’u lava and consistent with isotopic constraints. These highly
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specific melting parameters are presented only to generate an average Ta'u source that is
consistent with isotopic constraints, and by presenting them we are not suggesting such
precise knowledge of the actual mantle “plumbing” beneath Ta'u island.

The *’8r/*Sr of primitive mantle is unconstrained. so it is not possible to evaluate
whether the ¥'Sr/**Sr measured in Ta’u lavas is enriched or depleted relative to primitive
mantle. However, the average ¥78r/*Sr in Ta'u lavas (0.704650) and the Rb/Sr of the
Ta’u source (0.0268) can be modeled as having evolved from primitive mantle at 1.8 Ga
if the present-day primitive mantle *’Sr/**Sr is 0.70508. a value that is in the range
typically assigned to primitive mantle. In order for the two-stage isotope model to
produce the observed average Ta'u %pb/2™Ph (19.271) and >°°Pb/*™Pb (15.597)
(excluding T14 and considering only Tl-spiked data®), the proportion of sulfide'” in the
Ta'u source mineralogy is adjusted to obtain an appropriate parent-daughter U/Pb source
ratio. The resulting calculated Th/Pb source ratio is within error of the Th/Pb ratio
required to produce the average Ta"u *™Pb/*Pb composition (39.424) in 1.8 Ga. While
non-unique (a different melt model could be chosen or the Ta’u source formation age
may be different, etc.), the trace element source calculated from Ta’u lavas is consistent
(within the uncertainties of the data) with constraints from radiogenic isotopes.
Generation of a source for the Samoan EM2 lavas. Determining the precise nature of
the recyceled component contributing to the enrichment in the Samoan plume is not
straightforward. UCC rocks and individual marine sediment cores show a large degree of’
trace element heterogeneity that varies considerably with geography and provenance' "',
and the composition of a recycled sediment may depend on the geography of the

subduction zone. More problematic is the issue of temporal variability’™*': the trace
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element budgets of sediments encountered in modern oceans may be poor analogues for
the sediments subducted in the past. Finally, the poorly constrained processes operating
in subduction zones. including fluid loss and/or melting of sediments, may modify the
composition of the subducted sediment component™ ™,

With these caveats aside, we take a simple approach. We assume that the
compositions of subducted material are conserved in the subduction zone. Perhaps fluids
and melts are removed from the slab and inoculated into the mantle wedge: but the
resulting slab residue and the fertilized mantle wedge may in some cases stay together as
a package. This package is what enters the general circulation. to eventually be remixed
to end up looking like “closed system” slab recyeling. While the composition of the
original material sent into the subduction zone is underconstrained. we explore whether
or not a modern UCC composition. when mixed with the depleted Ta u source, can
generate a suitable source for the Samoan EM2 lava D115-18. We assume that after the
depleted Ta’u source mixed completely with the enriched UCC component, the resulting
peridotite (treated here as a single lithology) was melted in a modal, aggregated fractional
melting system. The modal abundances of the mantle phases, the contribution of UCC to
the depleted Ta’u source. and the degree of melting (and the proportion of gamnet and
spinel melting) of the resulting mixture (the EM2 source) are all adjusted 1o generate :
trace element spidergram that is similar to the enriched Samoan EM2 basalts. The
combination of these parameters that generates a “best-fit” spidergram to the Samoan
EM2 lava composition is given in Supplementary Table 2. The agreement between the

model spidergram and the spidergram for Samoan EM2 lava D115-18 is optimized (the
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fit is within 14% for all the trace elements considered. or ~11% if U is excluded) when
the contribution of the UCC component is ~5%.

Having fixed the proportions of UCC (5%) and the depleted Ta’u source (95%) in
the EM2 source sampled by lava D115-18 (with ¥'Sr/*Sr and "*Nd/"**Nd of 0.718592
and 0.512314, respectively), we use trace element budgets and isotopic constraints to
calculate the ¥Sr/**Sr and "*Nd/'**Nd of the UCC component. Assuming a measured
1sotopic (sTSrv"“Sr = 0.704650 and "*Nd/"**Nd = 0.512789) and calculated trace element
composition (Supplementary Table 1) of the Ta'u source and a trace element composition
of UCC", we calculate the Sr and Nd isotopic composition of the UCC component in the
Samoan plume to be 0.7421 and 0.5117, respectively. The ¥'Sr/**Sr and "*Nd/'*'Nd
values caleulated for the UCC endmember in the Samoan plume are within the range of’
values measured in ancient UCC shield rocks*® (Supplementary Figure 2).

While the addition of UCC to the depleted Ta'u source generates a spidergram
that is a close match to Samoan EM2 lavas, the fit is not perfect. In particular, the
element that exhibits the least perfect fit to the data is U. Samoan EM2 lavas have lower
U concentrations than the model result, and the disagreement may be a result of U-loss
during weathering (note the high Th/U in sample D115-18; Supplementary Table 3).
Addressing contamination by marine sediment. Implicit in the model of the EM2
source is the assumption that the sediment signature in the Samoan EM2 lavas is a
primary mantle signal and not a result of shallow-level sediment contamination. A plot

207

of A7 Pb/**'Pb--A™*Pb/**Pb (see Main Text Figure 4) indicates that sediment

contamination is not an issue. Further evidence comes from ¥'Sr/%Sr measurements in

sediments from the Samoan region, which exhibit ¥Sr/**Sr ratios (0.70614 to 0.70824)
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that are much lower than the most enriched Samoan EM2 lavas (0.72047 in whole-rock
sample D115-21). It is very difficult to generate the high ¥'Sr/*Sr observed in the new
Samoan EM2 lavas by sediment contamination. For example, the GLOSS average
$75r/80gr composition is only 0.7173 (327 ppm Sr)''. a value that is much lower than the
most isotopically-enriched lavas from Samoa. Even if the most isotopicallv-enriched
marine sediment (¥'Sr*Sr = 0.73493. 251 ppm Sr) in the compilation from ref. 11 were
added o the least isotopically-enriched submarine Savai'i lava ('Sr*8r = 0.705435. 374
ppm 8r). over 60% sediment assimilation would be required to generate the most
radiogenic ¥7Sr/%Sr observed in the Samoan lavas. Such large quantities of sediment are
not visible in the trace element spidergrams of the most enriched Samoan lavas.

In general, Samoan lavas do not show a correlation between ¥8r%Sr and Si0,
(Supplementary Figure 4). However, *’Sr*'Sr ratios in whole-rock lavas from dredge
D115 do correlate with SiO;. Having ruled out sediment assimilation using Sr and Pb
isotope data, the ¥'Sr*Sr - §i0; array formed by ALIA D113 samples is interpreted to
be a result of magma mixing between an evolved (high Si0s), isotopically-enriched
magma and a less evolved, less isotopically-enriched magma. Other major and trace
clement data are consistent with this scenario (see Supplementary Figure 4). Perhaps the
isotopically-enriched magmatic endmember evolved by crystal fractionation in a magma
chamber and, just before eruption. mixed with a later pulse of a less evolved, less
isotopically-enriched magma. Magma mixing is not an uncommon phenomenon;
heterogeneous Y81/ ratios recorded in olivine-hosted melt inclusions from individual
Samoan basalt samples suggest that mixing of magmas from isotopically-distinct sources

: - e3
is not uncommon in Samoa” .
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Data sources for HIMU and EM1 lavas. In Fig. 2 and Fig. 4 of the main text, trace
element and Pb-isotope data for the HIMU endmember are from samples collected at
Mangaia and Tubuai islands and are reported in refs. 41 and 42. Trace element and Pb-
isotope data from the EM1 endmember are from samples collected at Pitcaimn and include
data from ref. 43 and unpublished data (S.R. Hart and E.H. Hauri). Only data from the

freshest, most isotopically-extreme samples were used.
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2. Supplementary Figures
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Supplementary Figure 1 *’Sr/*°Sr vs. *He/*He isotopes in Samoan basalts.
New *He/*He ratios in the enriched Samoan EM2 basalts are low (<5 Ra), and
plot on a trajectory that extrapolates to a UCC component with low *He/*He
(0.007 Ra)'"® and high ¥ Sr/®°Sr (0.7421). Data for the other Samoan islands and

seamounts are from refs 8 and 40.
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Supplementary Figure 2 ¥7sr/*sr vs. "**Nd/"**Nd of Samoan shield basalts
compared with samples from upper continental crust (UCC) from ref. 26. The
grey field (with solid outline) encompasses Sr and Nd isotopic analyses on UCC
samples®, and extends outside of the figure to values of 1.1862 and 0.51023,
respectively. The grey field (with dashed outline) encompasses the non-Samoan
OIB field. The orange field describes Samoan shield basalts observed in
previous studies, the new Samoan EM2 basalts (red) extend well into the field for
UCC. Tic marks represent addition of the UCC component to the depleted
peridotite Ta'u source. The isotopic composition of the UCC endmember in the
Samoan plume is calculated to have ®’Sr/*Srand **Nd/"**Nd of 0.7421 and
0.5117, respectively (light blue box, see Supplementary Discussion), and lies in
the range of values previously measured on UCC rocks®®. 5% of this
hypothetical UCC composition is required to generate the spidergram of

Samoan sample D115-18 (and an estimated 6% UCC is required to generate the
¥Sr5Sr ratios in the most enriched cpx from sample D115-21).
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Supplementary Figure 3 Primitive ma ntie*® normalized trace element patterns
for Samoan basalts and peridotite sources. These compositions are used in a
sediment recycling model for generating a Samoan EM2 mantle source. Ta'u
lavas are assumed to be melts of a depleted plume component, and the average,
olivine-fractionation corrected Ta'u lava composition is plotted. A Ta'u source for
the average Ta'u lava is calculated to satisfy isotopic constraints. 5% of uccis
added to 95% of the Ta'u source to make the EM2 source sampled by the
Samoan lava D115-18, and the model melt of the EM2 peridotite source is
plotted. The spidergram of the model melt is similar to sample D115-18 (the
second most isotopically-enriched Samoan sample). The most isotopically-
enriched lava, D115-21, is too evolved to reliably reconstruct its trace element

composition. Plotted compositions can be found in Supplementary Tables 1 & 2.
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Supplementary Figure 4 A model for the co-variation of SiO, and *’Sr/*®Sr in ALIA D115 samples.
Samoan lavas do not exhibit a one-to-one relationship between SiO. (or Mg#) and *’Sr/*®Sr; evolved
Samoan lavas exhibit both high (up to 0.7205) and low (0.7044) ®7Sr/*8Sr ratios. However, lavas from
dredge ALIA D115 exhibit a correlation between *Sr/**Sr and Si0,. We explain this correlation in ALIA
D115 lavas as a result of mixing between a highly evolved, isotopically-enriched magma and a less
evolved, less isotopically-enriched magma. In this scenario, the mixing endmembers are a Savai'
submarine lava sample (ALIA D114-01; Supplementary Table 3) and a highly evolved lava from Tutuila
(91TP-128; SiO; = 66.30 wt. %, MgO = 0.41 wt %, FeO = 4.06 wt %, CaO = 162 wt %, Al,O; = 17.03
wt. %, Sr = 395 ppm; Natland unpubl. data). The measured *Sr/**Sr of the Tutuila lava is 0.705535

However, for the sake of argument, this sample is given an *"Sr/°°Sr ratio of 0.730 in the mixing model in
order to determine whether mixing between an evolved magma and a less evolved magma can generate
a mixing array consistent with the data from dredge ALIA D115 Sc was not measured on the Tutuila
lava, but its concentration is assumed to be 4 ppm. The reduction of Sc and CaO/Al,O; (including
reduced Mg#'s and increased SiO;) in the most isotopically-enriched lavas from ALIA D115 is consistent
with cpx fractionation. Crystal fractionation of an isotopically-enriched magma followed by mixing with a

less evolved, less isotopically-enriched magma describes the geochemical data from dredge ALIA D115.
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3. Supplementary Tables

Supplementary Table 1. Calculation of the depleted P inthe S plume, using lavas from Ta'u island
Primitive Avg. Ta'u lava” Variability in 18 Ta'u lavas Buk partition coefs’ Bulk partition coefs’ Depleted Ta'u source’
mantie (olivine corr'd to Fow) (10, std. dev.. %) (gamet feld) (spinel field) from avg. Tau lava)

[T 06 149 185 0.000144 0.000124 0,758

Ba 6.6 140 19 0000144 0.000124 714

™ 00795 an 134 000219 0.00178 0.138(0.117)°

u 00203 0.61 127 0.00074 0.00018 0.0308

Nb 0658 2853 115 0.00383 0.00302 145

Ta 0.037 197 R Y g 0.00393 0.00302 010

K 240 SBAN 98 0.00150 000128 200

la 0648 2327 10 00114 0.00883 120

Ce 1675 4883 103 00181 00181 264

PL 015 1.49 184 00834 00816 0.181

4] 0.254 6.09 100 00314 0.0247 0388

Nd 1.25 2858 a1 00463 0.0357 188

St 199 3541 99 0.0885 0.0364 283

It 105 184 99 0.0867 00371 165

HI 0283 474 90 0114 0.0807 0538

Sm 0406 6.64 78 0.0868 0.0574 0.657

tu 0154 210 79 0121 0.0671 0.253

Ti 1205 17190 74 0.178 01 2080

Gd 0.544 632 78 0.178 0.0769 0.965

| 0.099 004 81 0.254 0.0876 0.18

Dy 0674 517 82 0316 0.0964 118

Ho 0149 093 81 0.402 00872 025

¥ 430 286 73 0475 0.102 740

1] 0438 24 13 0481 0105 070

Tm D068 0% 12 0673 0.110 012

Yb 0441 165 71 0885 0.115 084

Lu 00675 024 75 109 0124 0148
'Primitive mantie is from ref 28
“Ta'u basalts (with MgO > 6.5 wt.%) used in the average lava composition include: T10, T16, T18. T22 T23, T25, T30, T32, T33, T44, T45, T46, T47, T48, T51, T54, 185,
and74-1. Tidis of Pb ancisna The 18 Tau basalts were indivi for clivine to be in equill with a
mantle olivine eumoﬂiondm,(anumm Fe''Fe..is 090 trace element corrected, and then mm
‘Bulk partiion by the modal spinel stabiity Seid: 3.72% spinel. 17.8% dh 26%
52.30% olivine, o1muuo gamet stability feld: 10.7% garnet, 20.8% dlinopy . 13.4% ot 55.1% olivine, 0.161% sulfde. Mineral-melt partition

coeficients are from ref. 16, with the following additions and modifications: umnnmnmmn-ommmmm-smmm respectively,
Tm and Sr are assumed to have a bulk partition coefficient that is the average of the elements that bracket them on the spidergram: the sulfide-melt partition coefficient

for Pb is assumed to be 42 The mineral modes in the gamet and spinel stability felds are to agree with a primitive mantie major element composition
Nm«u’-mc Ta’ummhdmmmmaﬁomwkﬁnmmdmmmuhm the low degree of melt extraction will
change the mineral modes

The Ta'u source assumes that the average. olivine- Factionation corrected Ta'u lava resulted from a 5.1% modal aggegated fractional melt with a 50 6% melt contribution
from the garnet stability Geid (and the remainder from the spinel stability field). This precise set of meRing parameters allows the parent-daughter ratios (LuWHf and SmNd)
in the Ta\ source to be consistent with the '"*HI'"'H and *'Na/'*‘Nd ratios measured in the Ta'u lavas (given a two-stage evohution model, with differentiation from primitive
mantle at 1.8 Ga).

“The Th concentration in parenthesis, which yieids a Th/Pb ratio of 0.727, provides a value required for the Ta'u scurce to be consistent with consiraints from

My pp isotopes measured in Ta'u lavas. The other Th value for the Ta'u source is ing the modal sulfde to give U/Pb ratios that

are consistent with **Pb/™Pb and ™ Pb/™Pb. msmmm(n1wm-m:mmnﬁ)mummun)dMn‘mn¢m
variability (£23%) in Ta'u lavas, and s therefore (within uncertainty of the data available on Ta'u lavas) consistent with measured “*Pbr™*Pb ratios.
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3. Supplementary Tables

Suppl ntary Table 1. Calculation of the depleted P inthe S plume, using lavas from Ta'u island
Primitive Avg. Ta'u lava’ Variability in 18 Ta'u lavas Bulk partition coefs’ Bulk partition coefs’ Depleted Ta'u source’
mantie (clivine corr'dto Fox) (10.std. dev.. %) (gamet field) (spinel field) from avg. Ta'u lava)

RE v 149 165 0.000144 0000124 0.759

Ba b6 140 ns 0000144 0000124 7.14

Th 00795 2n 134 000219 0.00178 0.138(0.117)°
u 00203 061 127 000074 0.00018 00308
Nb NASB 2853 15 000383 0.00302 145

Ta 0.037 1.97 17 000383 0.00302 0.10

K 240 SB6O 98 000150 000128 20

la 0648 2327 10 00114 0.00983 120

Ce 1675 4893 103 00191 00161 264

Ph 015 1.49 184 00834 00816 0.161

Pi 0.254 6.09 100 00314 0.0247 0368

Na vJs 2858 91 00483 00357 188

St 199 354.1 99 0.0885 0.0364 283

2 105 184 99 00867 00371 165

Hf 0283 474 80 0114 0.0807 0538
Sm 0406 6.64 8 0.0868 0.0574 0.857

ku 0154 210 79 0121 0.0671 0.253

1i 1205 17180 74 0176 0122 2060

od @ 544 6.32 78 0.178 0.0769 0.965

iy 009y 094 81 0.254 0.0876 0.18

Dy 0674 $17 82 0316 00964 118

Ha 0149 083 81 0.402 00872 025

Y 4.30 288 73 0475 0.102 740

] 0438 224 73 0481 0106 070
Tm DU6E 029 72 0873 0110 012

b 0441 165 71 0865 0115 084

Lu 00675 024 15 109 0124 0148

Primaive mantie is from ref 28
“Ta'u basalts (with MgO > 6.5 wt.%) used in the average lava composition include. T10, T18 T18 T22 T23 T25. T30 T32, T33 T44, T45, T46 T47, T48 T51 T54 TS5
and74-1 Tidis of Pb and is not The 18 Tau basalts were Y for olivine to be in equili with 3
mantle olivine composition of Fo, (assuming Fe"'fnk.. is 0 90), trace element corrected, and then averaged

‘Bulk parttion i are by g the f modal spinel stabiity Seid: 3.72% spinel 17.8% . 26% 3
52.39% olivine, 0.162% sulfide; gamet stabiity hield: 10.7% garnet. 20 8% dinopy . 13.4% onth . 55.1% olivine. 0.161% sulfide. Mineral-melt partition
coeficients are from ref. 16, with the L and { B2 and Ta are assumedto have the same bulk partition coefficients as Rb and Nb, respectively,
Tm and Sr are assumed to have a bulk partition coeflicient that is the average of the elements that bracket them on the spidergram: the sulfide-melt partition coefficient

for Pb is assumed to be 42 The mineral modes in the gamet and spinel stability felds are calculated to agree with a primitive mantie major element composition
Although the Ta'u source is slightly depleted. and therefore has suffered a small amount of melt extrachion dunng Rs history, the low degree of melt extracton wil

not significanity change the calculated mineral modes

“The Ta'u source assumes that the average, olivine- Factionation corrected Ta'u lava resulted fom a 5.1% modal agg egated fractional melt with a 50.6% meit contribution
from the garnet stability Beid (and the remainder from the spinel stability feid). This precise set of meRing parameters allows the parent-daughter ratios (LwHf and SmMNd)
in the Ta\s source to be consistent with the ' "HE'"'Hf and *'Nd/ **Nd ratios measured in the Ta'u favas (given a two-stage model, with from primitive
mantie at 18 Ga).
“The Th concentration in parenthesis. which yields a Th/Pb ratio of 0.727, provides a value required for the Ta'u source to be consistent with constraints from

VP Pb isotopes measured in Ta'u lavas. The other Th value for the Ta'u source is calculated by adjusting the modal sulbde abundance to give U/Pb ratios that

are consistent with “Pb/™Pb and ™' Pb™“Pb. This Th svalue (0.138) generates a Th/Pb ratio (0. 855) that is within error (18%) of the measured Th/Pb

vaniability (£23%) in Ta'u lavas, and is therefore (within inty of the data on Ta'u lavas) conrstent with measured “"Pbr™Pb ratios.
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Chapter 3

New Samoan lavas from Ofu Island reveal a
hemispherically heterogeneous high *He/*He
mantle *

Abstract

New measurements of high *He/*He ratios in Samoan lavas from Ofu Island (19.5-33.8
times atmospheric) extend the known range for *He/*He in the southern hemisphere
mantle. The Ofu data suggest that the high *He/*He mantle component thought to be
common to all oceanic hotspots, called FOZO (Focus Zone), is not homogeneous. Sr, Nd
and Pb isotopes in Ofu lavas indicate that the Samoan high 3He/4He component is
isotopically distinct from the high *He/*He lavas from Hawaii, Iceland and Galapagos.
Along with Samoa, the highest "He/*He sample from each southern hemisphere high
*He/*He hotspot exhibits lower '*Nd/'**Nd ratios than their counterparts in the northern
hemisphere (excluding lavas erupted in continental, back-arc, and submarine ridge
environments). The observation of a large-scale isotopic enrichment (generally higher
¥Sr/*Sr and lower '"*Nd/'*Nd) in the FOZO-A (austral) high 3He/4He mantle compared
to the FOZO-B (boreal) high *He/*He mantle is similar to the DUPAL anomaly, a globe-
encircling feature of isotopic enrichment observed primarily in southern hemisphere
ocean island basalts. The recent discovery that terrestrial samples have '**Nd/'**Nd ratios
higher than chrondrites has potentially important implications for the origin of the FOZO
reservoirs, and suggest that the high *He/*He mantle has been re-enriched.

*In Press as: M. G. Jackson, M. D. Kurz, S. R. Hart, R. K. Workman, The Samoan lavas
from Ofu Island reveal a hemispherically heterogeneous high *He/*He mantle, Earth
Planet. Sci. Lett., 2007, accepted manuscript, doi: 10.1016/5.epsl.2007.09.023.
Reproduced with permission from Elsevier, 2007.
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Abstract

New measurements of high *He/*He ratios in Samoan lavas from Ofu Island (19.5 33.8 times atmospheric) extend the known
range for *[le/'ITe in the southern hemisphere mantle. The Ofu data suggest that the high *Tle/"ITe mantle component thought to he
common to all oceanic hotspots, called FOZO (focus Zone). is not homogeneous. Sr, Nd and Pb 1sotopes in Ofu lavas indicate that
the Samoan high *He/*He component is isotopically distinct from the high *He/*He lavas from Hawaii, Iceland and Galapagos.
Along with Samoa, the highest *He/*He sample from each southern hemisphere high *He/*He hotspot #exhibits lower ' *Nd/***Nd
ratios thun their counterparts in the northern hemisphere (excluding lavas erupted in continental, back arc, and submarine ridge
cnvironments). The observation of a Jarge-scale isotopic ennchment (gencrally higher ¥78/%°Sr and Jower “*Na/“Nd) in the
FOZO0-A (austral) high *He/"He mantle compared to the FOZO-B (boreal) high *He/*He mantle is similar to the DUPAL anomaly,
a globe-encircling feature of isotopic enrichment observed primarily in southern hemisphere ocean island basalts. The recent
discovery that terrestrial samples have " Na/"**Nd ratios higher than chrondrites has potentially important implications for the
origin of the FOZO reservairs, and suggest that the high *1le/'Tle mantle has been re enriched.
© 2007 Published by Lilsevier B.V.

Keywords: Samon; FOZO; PHEM; C; 3He/4He;, mantle; basalt; peochemistry; DUPAL; Lotspot

+ MODEL

1. Introduction *He/*He reservoir is thought to reside (Kurz et al., 1982; a3
Hart et al,, 1992; Class and Goldstein, 2005). Conse- 34
Oceanic lavas with high *He/*He signatures are rare, quently, ocean island basalts (OIBs) erupted at hotspots 35

and derive from ancient reservoirs in the earth’s mantle. provide a unique tool for probing the composition and 3,
Voleanically active hotspots with high *He/*He lavas, history of the deep mantle. Radiogenic isotopes in OIBs 37
such as Samoa and Hawail, sample melts of buoyantly are commonly used as tracers for the various mantle 32
upwelling regions of the deep mantle where the high components revealed at hotspots, and show a diverse as

range of compositions, ot endmembers, including DMM a0

* Corresponding author. Woods Hole Oceanographic Institation, MS

(depleted mid-ocean ridge basalt [MORB| mantle), 41

#24, Woods Hole, MA 02543-1525, USA. HIMU (hlgh ‘}1,, or .!JSIL;ZO-G],b manllc), EM1 and EM2 42

E-mail address: mpacksoni@whoi edu (M.G. Jackson). (enriched mantle 1 and 2) (Zindler and Hart, 1986).

0012-821X/$ - see fromt matter © 2007 Published by Elsevier BV,
doi: 1010 167) epsl 2007.09.023
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mantle, Earth Planet. Sci. Lett. (2007), doi:10.10164.epsl.2007.09.023
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Emerging from this taxonomic diversity, a unifying
theory in mantle geochemistry maintains that a single
mantle component exists that is common to all hotspots
(Hart et al., 1992): Mixing arrays from individual ocean
islands originate ncar the mantle endmembers in various
radiogenic isotope spaces and converge on a region
characterized by depleted isotope ratios that is distinet
from normal MORB (Hart et al., 1992). Lavas plotting
in this region of convergence often exhibit elevated
*He*He ratios, and are suggested to sample a com-
ponent in the mantle common to all hotspots. Variably
called FOZO (Hart et al, 1992), PHEM (Primitive
Helium Mantle; Farley et al, 1992), or C (Common;
Hanan and Graham, 1996), the high *He/*He common
component is thought to be a relatively less degassed
region of the (lower?) mantle (Kurz et al., 1982: Class
and Goldstem, 2003).

New geochemical data from the Samoan hotspot are
not entirely consistent with this view of the mantle.
The new ‘He/*He ratios (up to 33.8:£0.2 Ra, ratio to
atmosphere) from the Samoan Island of Ofu are the
highest yet recorded in the southern hemisphere, and are
significantly higher than >He/*lle ratios previously
measured (25.8 Ra) in Samoan basalts and xcnoliths
(Farley et al., 1992; Poreda and Farley, 1992; Workman
et al., 2004). The new helium isotope data from Samoa
extend the range of observed *He/*He up to values
comparable to those found in Hawaii (32.3 Ra; Kurz
etal, 1982), Iceland (37.7 Ra; Hilton etal | 1999) and the
Galapagos (30.3 Ra; Kuiz and Geist, 1999, Saal et al.,
2007), referred w here as HIG. The Ofu lavas arc
isotopically more enriched (higher *’Sr/**Sr and lower
"*Nd/'**Nd) than the high *He/*He samples from HIG
and exhibit elevated incompatible trace element con-
centrations. Due to this isotopic and trace element
enrichment relative to HIG lavas, the new data from
Samoan high *He/*He lavas are inconsistent with recent
models that describe the evolution of the high *He/*He
mantle, and the Ofu data suggest that the high *He/*He
mantle domain is isotopically heterogeneous.

2. Methods and results
2.1. Sample location and state of preservation

Ofu Island is located in the eastern province of the
Samoan archipelago, an age-progressive hotspot track
(Hart et al., 2004; Koppers et al., submitted for
publication) located just north of the northemn terminus
of the Tonga subduction zone. The samples were col-
lected at various locations on the perimeter of Ofu and
Olosega islands (Ofu hereafter; sample location map is
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available in the supplementary data in the Appendix). o3
Tholciitic lavas in Samoa arc rare (Natland, 1980; o4
Workman et al., 2004), and with the exception of a e
cumulate (OFU-04-14) and a gabbro (OFU-04-17), 96
the Ofu lavas presented in this study arc alkali basalts o7
(Table 1). The Ofu samples are generally quite fresh. os
With the exception of sample OFU-04-12, which has a eo
Th/U ratio of 4.8 (and may indicatc U-loss during sub- 100
aerial weathering), the range of Th/U ratios in the Ofu 11
sample suite is 4.0-4.4. The Ba/Rb ratios for Ofu sam- 12
ples (9.1+1.1 at 1o) are similar to the values for young 103
Samoan basalts reported previously (Workman et al, 1
2004), and somewhat lower than the canonical value of 108
~ 12 for fresh OIB lavas (Hotmann and White, 1983). 106
Exclading the camulate sample OFU-04-14, which has a 107
Rb/Cs ratio of 280, the range of Rb/Cs values from the 10
Ofu samples (from 73 to 137) is close to the canonical 1w
range of 85 95 (Hofimann and White, 1983). These 110
weathering proxies indicate that elements equally or less 111
mobile than U, Rb and Cs yield useful petrogenetic 112
information. 113
2.2. He, Sr; Nd and Pb isotapes in Ofu lavas 14

New ‘He/*He values (19.5to 33.8 Ra) were measured 115
at Woods Hole Occanographic Institution on olivine 116
and clinopyroxene (cpx) phenocrysts separated trom 12 117
hand samples (Table 1). Measurements were made by 11y
crushing and fusion in vacuo, following the protocol ns
reported in (Kurz et al,, 2004). The sample with the 120
highest *He/*He value, OFU-04-06, was taken from an 121
ankaramite dike exposed at 2 m depth in a recent road 122
cut. Olivines trom this sample are relatively gas rich 123
(67.5%10 * ecm® STP g ', the sum of crushing and 124
fusion) and yielded similar *He/*He ratios on two sepa- 123
rate crushes of the same olivine separate (OFU-04-06¢r1 126
followed by OFU-04-06cr2). Following the crushing 12
experiments, a fusion extraction of the resulting olivine 12s
powder (OFU-04-06fus) yielded lower ‘He™He, indi- 126
cating the presence of ingrown radiogenic helium, prob- 120
ably implanted from the Th and U-rich matrix. Two
different olivine populations (lighter and darker olivines) 132
separated from sample OFU-04-06 yielded similar 13
‘He*He matios (33.4 and 33.6 Ra). These fusion and 1
crushing experiments, coupled with sampling depths, 125
preclude the influence of cosmogenic helium for 1
this important sample. The lava with the seecond highest 137
*He/*He value measured by crushing—sample OFU-04- 138
15 also yielded lower *He/*He ratios upon fusion 13
(OFU-04-15fus) of the crushed olivine powder. Addi- 140
tionally, crushing experiments of sample OFU-04-03 1n
(OFU-04-03cr1 followed by OFU-04-03cr2) yielded 142
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reproducible results. The veproducibihity of the measure-
ments for Ofu samples, the relatively high helium
concentrations, the absence of higher 'Tle*lle ratios
on melting, ind shielding of many ot the samples all
indicute that cosmogenic “He is not a factor in generting
the remarkably high "He e ratios.

The Sr, Nd,
associated measurement precision and standard normal-
Lzations are reported m Hart and Blusztagn (2006) and
references therein. Basalt St, Nd and Ph-isotope analyses

and Ph chemistey, mass spectrometry,

were pertormed on the same powder tollowing | h of

leaching m 6.2 N THCHat 100 °C. S and Nd chemistry
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wits done with conventional 1on chromatography using
DOWEX 50 cation resin and HDEHP-treated teflon for
Nd separation (Taras and Hart, 1987). An HBr HNO;
procedure (Galer, in press: Ahouchami eral., 1999) was
uscd for Pb chemistry, with a single column puss. St, Nd.
and Ph-isotope analyses were done on the NEPTUNE
multi-colleetor 1CP-MS at WHOL Internal precision is
5-10 ppm (2a) for St and Nd-isotope measurements.
Adjusting to 0.710240 (SRMY87 St standard) and
0L311847 (La Jolla Nd standard) gives an estimated
external precision tor Sr and Nd of 1323 ppm (2a).
The mternal precision lor Ph-isotope vatios 18 better
than 15 30 ppm, and using SRM997 11 as an iternal
standard, the external reproducibility following full
chemistry ranges from ~20 ppm (26) for " 'Pb ""Ph
to =120 ppm (27) for ***I'b 2**P'b (1lart and Blusztajn,

2006). Ph-isotope ratios are adjusted to the SRM 981 x

values of Todt er al (1996).

Ofu lavas exhibit slighl variations in the radiogenic =

isotope ratios ot STSEAESE (0.704438 0.704793),
NN (0.512800 o 0.512844) and “pb- ‘"‘l’b
(19.126 to 19.257) (Fig. |

the highest (more enriched) *’St/**St ratios exhibit low

Ne e mtios and samples with the least cadiogenic =
731748y ratios, found primarily at Ofu. are associated
Sumilarly. 2
Samoan lavas with the most enriched (lowest) '"**Nd/ o1
*He*He ratios. However, Nd and Pb 212
isotopes measured in Ofu lavas do not define end-member 211
values for Samoa, but instead fall towiard the upper end 215

with the highest 'He™He ratios (Fig. 1),

HNd have low

found i the hotspot.
In order to further constrain the nature of elevated

*He/*He lavas associated with EM2 holspots, we present 218
Sr, Nd and Pb isotopes for a high *He*He sample trom 21

Fig. |. The new Ofu Gata incicate that the Samoan Ligh ‘He 'He lavas
have more enriched ™' Sr**Srand ' "Ne/""'Nd than the highest ‘ITe"'Te
lavas from ITawaii, Iceland and Galapagos (abbreviated ITIG). The field
of Samoan shield basalts is shaded grey, and the field of Samoar. lavas
from Of. [sland is shaded green (see Table 1).ITIG lavas trend to a more
isotopically depleted high 'Ile/'1le component than lavas from Ofu A
single sample from Baflin Islard is an exception to the Sroand Nd-
isotope separation between the Oft and HIG lavas. but was indicated by
Stuart ¢t al. (2003) to de crustally contaminated. Data sources are
summarized in Gralam (2002) or noted in [uvle 20 In the isotope
projections shown in this figure. the separation between the highest
‘[e/'Ile samples from the northemn and southern hemisphere high
*He/'He hotspols is not perfeet. For example, the Pheisolones of the
highest *HeHe lavas from Samoa and the Galapagos overlap.
However, the isotopic and hemispheric separation of FOZO-A and
FOZO-B samples (Tihle 2) is ohserved in the isntope projections
shown in Fig. 2. (For interpretation of the references to color in this
figwe legend, the reader is refened to the web version of us anticle.)

Please cile this arficle as: Jackson, M.G., et al, New Samoan lavas from Ofu Island reveal a hemispherically h
mantle, Barth Planet. Sci. Lett. (2007), d.ol.IO 1016/;.¢ps.2007.09.023 ;

|

gencous high *He/'He

and Table 1). Together with 2
Otu, data from Samoan lavas in general detine a wedge- 2
like shape in *He*He—""Sr %S isotope space: lavas with

184
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Fip. 2. I'he hiphest *He He lavax from northen: hemisplere (FOZ0-B) holspols separate from the highest *HelHe samples frm socthern
Lemisphere (FOZO-A) hotspots in a.) ¥'Se*%8r #3Nar*Na space, h.) the martle tetrahecron, c.) a “helium balloon” pinplot showing 74r/%r
ingn

Nd"""Nd ‘He'He. anc d.) " 'Nd'"''Nd ‘'He'He isotope spaces. The criteria for selecting high ‘He'He lavas with St Nd Pb isotapes most
represenlialive of the OTE mantle are deseribed i Table 2 and Scetions 3 and 2.1 of the text. The FDR e (he nonechondritic BSE are deseribed in

Fig 6. Although the Baftin Island lava (square marked with a “B") is crapted in a continental setting, and is thus exchided trom the compilation of
Ligh “He/*He lavas (see [able 2), it Losts the highest magmatic *He/*He on record and is included i the tigure for reference. Uhe Lighest *He ' He
Lavas from each hotspot (and e Ligh “He*He Baffin Islad lava) are significantly more enriched than the N-AMIORB composilion from Su (in sress),

- & 2 - . . 2 3 & . 3 A
cansistent with carlier observalions (Hart ¢t al,, 1992). Compared 1o other southen: hiemisphere high "HemHe Tavas, Samoan high "He He lavas do
not exhisit anomalous Sr. Nd and Ph isotopes.

Moorea island in the Societies hotspot. The high *He/*He
sample from Moorea, MOO1-01, has a *lle/*le vatio of
17.0 Ra (Hanyu and Kancoka, 1997), and has Sr. Nd and
Pb-isotope ratios similar to Ofu basalts (Table 1).

3. Ofu in a global context

The S750% S and NI/ *HNd compositions of Ofu
lavas show that the high e 'He reservoir sampled by the

Samoan hotspot is more enriched than the high *He/*He 2

reservoir sampled by THG Tavas. Data in Fig. 1 show a 2oy

clear “valley” between the highest “He*He Sumoan and 22
HIG lavas; samples with "He*He greater than ~22 Ra 2
have not been found m this gap. The Otu samples have 2

USU*St ratios greater than 07044, while the high 232
e e HIG lavas have “7SrSr less than 0.7038; 23

4 single Ballin Island sample, which is considered by 2

Stuart ¢t al. (20023) to be aflected by contamination from 23

Please cite this article as: Jackson, M.G., et al., New Samoan lavas from Ofi: Tsland reveal a hemispherically heterogencous high *He/*He

mantle, Earth Planet. Sci. Lett. (2007), doi:10.1016/j.epsl.2007.09.023
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lahle 2
Summary of the raciogenic isotope data tor the highest ‘He*He samples used to define FOZC-A and FOZO-B
Hotspat Islanc. D of sample  ‘HeHe  *'Sr®°Sr  ““Nd"*Nd ““Pb”“Pb ““Pb"™Pb **Pb*Pb Epsilon “*'Nd
SeAMOURL with highest (L la)
region. ‘He"Ie used
FOZO-A
Sumoa Ofx Ofu-01-06 338-02 0.704581 0512827 19189 ISiS? 39202 }2
Societies Moorea MO-01-01 17.0=1.6 0704621 0.512774 19.216 15.603 38933 32
Macconald* Macconald ~ SO-17 6IDS2 15803 0703755 0.512777 19.16 1561 3927 k
Tz Perrandes®* Mus a Tiern PIN-8 172803 0 70363 0512810 1913 AN I8 08 455
Rewnion® Reunion VPI931 13.6=03 0704130 051284 18,88 13.59 RAR 4.5
Kerguelen” Ieard IDB21A 183205 0701862 0.512705 18.776 15588 39.170 1.8
Bouvet" Bouvel WISB 12421 0.70371 G.51284 19588 15.653 39.243 4.5
Mnrqx:ems“ Hiva Oa HO-AI-] 144=1.4 070471 0.512834 19.017 15570 3X823 1.4
FOZO-R
Hawaii *~ Lothi KKI18-8 323=z0.6 0703680 0.512945 18. -1-.‘( 15477 X189 6.5
[celand” Westfjords  SEL-97 37.722.0 0703465 0.512969 15473 38453 7.0
Galapagoes ' Femandink  NSK 97-211 30.3:0.2 0703290 0.512937 15 53 38711 6.1
Cape Verde ® Suv Nicolan  SN-10 15701 0703050 0.57296 15§ 3N 062 67
Azores™© Terciera 7 11.3=08 0703520 0.512960 19,883 15 30 39310 0.8

It Sr. N anc, Pb isotopes are uravailable for a sample with high ‘He/*He. they are estimated based on the criteria below and the estimated values are
italicized in the table.
High "He'He lavas crupled al deep submmarine rdge environmenls are excladed, and inclide 1he following locations as summanzed in Ciralam (200 2
Sountheast Indian ridye near Amsterdam and St. Paul (14.1 Ra), east and west rits of the Faster micraplate (11.7 Ra), (n:lt of Tadjonra near Atar
(14.7 Ra), southern Mid-Atlantic ridge near Shona and Discovery (12.3 and 15.2 Ra, respectively), Southwest Indian Ricge near Bouvet Island
(119 Ra) ard the Manus Basin back-arc spreacing center (15.1 Ra). Ilowever, sub-aerially erupted high ‘Tle/'Tle lavas sammled at ridge-centered
hotspots, including Bauvet Island (Kurz et al, 1995) and leeland (Hilton ot al | 1999), are inchuded in the dataset. Additionally, high *He He lavas
erupted in continental seftings are not considered, and include: Baffin Island (Stuart et al, 2003) and West Greenland picrites (Graham etal.. [998),
Yellowstone (Gralam et al, 2006) and Afir (Scarsi and Craig, 1996). Finally, high ‘He/'He lavas crupled i backeare anvironments, such as
Rochambuean Bank (Poreda and Crarg, 1992) and Manus Basin (Macpherson etal., 1998), are excluded from oar treatment ol ke high *He/'He mantie
® Many ot the high *He*He lavas in this tahle have a fiull complement of lithophile radiogeric isotope analyses measurec. on the same samples,
1d are from (ke ollowing locations: The Galapagos (Kurz and Geist, 1999; Saal et al |, 2007), Iawaii (Kurz of al, 1983, Staudigel etal  1981),
Samoa (Table 1), Teclmd Hilton ctal, 1999), Socictics (Hanyu and Kancoka, 1997; Table 1), Mamuesax (Castillo et al., 2007), Macdonald
(Hemond et al . 1994 Morewa and Allegre, 2004) and Azores (Tumner et al., 1997, Moreira et al,, 1999).

b A full complement of Sr, Nd and Pb-isotope data do not exist for all the high ‘Tle/'ITe samples listed in: the table above. Values for the “missing”
lithaphile rmdingenic isolopes (data in italics) are generated hased on the following criterin. The high *He/“He Cape Verde lava has Srand Ph isotopes
but lacks Nd ixotopes (Doucelance et al., 2003). Srand Ndeisotope data correlate well in the Cape Verde islands, and the Ndsisotope ratio for the Cape
Verde sample is made by regression through existing data. The high *IIe/*1Is Bouvet Island sample (Kurz et al . 199%) also has Srand Pb-isotope data,
but lecks w Ne-isotope meus cromont. The missing Nd isotopic value is estimatod by averaging vxisting Bouvd islond disti from O Nions ot al (1977
A high *He/'He samle from Rermion with Srisolope data (Graham etal | 1990) lacks Nid and Pheisotope data; Reunion lavas are isotopically avifomm,
and the GLOROC database (h 1t/ georoc mpch-mainz gwdg ce/georoc’) was used to estimate the Nd and P'b isotopic compositions for the Reunion
sample. Srand Nd-isotope dala are reported fora sample will: the second Lighest e e mesured from Juar Fenzandez (Farley <t al | 1993), but Po-
isotope data are missing; fhe high THe He Tuan Femandez sample exhibits one of the least mdiogenic Nd-isotope mtios (0.51284) in the Juan
Fernandez stite, so Ph-isntape compasitions “Ph. 24Pl from 19045 10 19 2 1£) from three other Jmm Fernandez samples ((rerlach et al  19X6) with
the leas| radiogenic Nd isolopes (0.51282-0.51281) were averaged 1o generale a Pb-isolope composition for the high e e lava.

¢ When the *He/*He ralios quoled above are lower than the niaximum from a holspol, il is beeause Sr, Nd and/or Ph-isolope ratios could nol be
estimated reliably for the sample, or because higher reported *He*He ratios were nat measured as precisely (or were suspected ot having a cosmaogenic
e influence). For example, w *1le/Tle value of 14.8 Ra was reported for an Azores lava (Madureira et al, 2005), but lithopkile rdiogenic isotopes

were nol reported and a coxmogenic *He inflience camrol he riled out for this sample. Similarly, a value ofup lo 35.3 Ra hax been reported (rom Laoihi
(Valbracht et al . 1997), hut analytical uncertainties on this measurement were large and lithophile isotopes were not reported.

4 The Sr, Nd and Ph isolopes of the eard sample (Barling and Goldsteir, 1990; Hilton et al | 1995) were not measured on the same sample as the
*HeHe, hut they were measiared on n sample (69244) from the same flow.

continental crust, is an exception to the separation of Ofu that the Samoan data trends toward a similar high *He/*He
and TG lavas. Ofu’s rend to a more enriched region component as the HIG lavas (Farley et al., 1992; Han
of Nd-isotope space than that sampled by the HIG lavas et al., 1992). The new isotope data argue against this
is also clear ("**Nd/"*Nd<0.51285 in Ofu versus "*'Nd/ hypothesis because Ofit has “He/*Tle as high as HIG but
FENG - 0.51290 in HIG lavas). Previous work suggested with more enriched $78e/56Se and " NG/ ™ML

Please cite this arlicle as: Jackson, M.G., et al, New Samoan lavas from Ofu Iskand reveal a hmsplumellly helcmgcneom lngh 3Hcf'Hu
 mantle, Earth Planet, Sci. Lett. (2007), doi:10, 1016/.epsl. 2007.09.023
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In ovder to place constiiints on the Sr, Nd and Ph-
isotope heterogeneity of the high He*He mantle reser-
voir (Fig. 2), we have compiled a dataset ot Sr, Nd and Pb
isotopes for lavas that are representanve ot the high
“He*He OIB mantle. We include only the hotspots that
have ‘Tle e 11 Ra, thereby excluding hotspots such as
Tuistan, Gough, wid St. Helena, ete., tat do not sample @
component fkom the high "He *He mamle. We also limit
our discussion to just the single highest *He Le sample
from each high  He™ He hotspot, inan atempt 1o deline
the Sr-Nd-Pb-isotope composition of the highest 'He/
*He reseryoir sampled by @ hotspot. Finally. high *He Y He
lavas crupted at continental, back-are and deep submarine
ridge environments are excluded (see Tahle 2 tor a list of
speetfic sumples from these thiee envimnments).

Using the above criteria, Table 2 lists the high
Ne” e samples that best vepresent the St, Nd and Ph
compositions of'the high He e ONM3 mantle reseryoir.
Combined with the new Ofu data. the high *He *He OIB
dataset m Table 2 suggests the existence of two iso-
topically distinet high *He ™ He reserveoirs in the mantle.
These two high ‘lle”lle reservoirs separate in the
northern (horeal) and southem (austral) hemispheres
(Fig. 2). The highest *He*He samples from cach of the
southern hemisphere hotspots, Macdonald seamount,
Bouvel, Kerguclen, Juan Fernandcez, Socictics, Reuruon
and Marquesas appear to sample the more isotopically
enriched (or less isotopically depleted, see Section 4.3),
high *He*He mantle component found in Ofu lavas. By
contrast, HIG lavas and two other notthern hemisphere
hotspots Cape Verde and Azores samiple & more iso-
topically depleted, high *He*He component than
observed in southem hemisphere high ‘He He lavas.
The highest *Te*Tle samples from the boreal and austeal
high *He*He hotspots separate toward the depleted
and enriched ends, respectively, of the global */Sr/™ Sy
NN O3 array (Fig. 2). Fig. 2 shows that there
are two separate “He*He peaks in St-Nd-He isotope
space: One peak is formed by the highest “Tie e
nonthern hemisphere samples and another peak. an-
chored by the high ‘Tle* e Ofu lava, is formed by the
highest *I1e/*11e southern hemisphere samples. Samples
with the highest *He/*He from each of the boreal and
austal FOZO hotspots also are distinguished isotopi-
cally inside the mantle tetrahedron formed by the
isotopes of Sr, Nd and Pb. The boreal (FOZ0-13) domain
plots closer 1o the DMM-HIMU join while the austeal
(FOZO-A) domain plots closer 1o the EM1-EM2 join
(g, 2). FOZO-A and FOZ.0-13 also clearly separate in
a mantle tetrahedron constructed from the isotopes of Pb
(a figure of the Pb-isotope tetrahedron 18 availahle as
supplementary data in the Appendix).

4. Discussion
4.1 [FOZ0O-A and FOZO-B: some important caveats

Unfortunately, there are limited numbers of hotspots
with moderately high ‘e Lle (from 11.3 18.3 Ra, 9
hotspots) and very high *He *He (230 R, 4 hotspots).
lithephile isotope daw on lavas rom many ol these high
e e hotspots are also limited (see Table 2). There-
fore. we cannot exclude the possibility that the apparent
hemispheric separation is related to sparse data, and that
existmg He, Sr, Ndand Phaisotope diata do not yet
adequately characterize the terresteial mantle. Further-
more, the isotopic and hemispheric separation of the two

FOZOs is not observed in all isotope projections: o s
*He*He vs. “"*Pb/*"*Pb and *He*He vs. * St*Sr iso- ;
tope spiaces (not shown), the FOZO-A and FOZO-B a0

fields oveclup. However, in “Tle e vs. "N/ Nd-
isotope space the two FOZOs are completely resolved
Fig. 2).

An additional characteristic of the “two FOZOs”

model is that the isotopic and hemispheric distinction is :
not alwatys observed in the highest *Tle e lavas crupted sis

in centinental, back-are and deep submacine mid-occan
ridge settings. One possible explanation is that mantle
plame interaction with the shallow geochemical rescr-
voirs in these three environments can decouple the deep
mantle 111 e signatures from the associated Sr, Ndand

I’b isotopes. [Tso, then the high *He®He rtios measured =

in lavas trom these three settings cannot be traced to the

siame source components s the St Nd and Phisotopes. 3

High *He*He lavas cruptad in continental settings may
have suttered crustal assumilation such that the Sr, Nd and
Ph isotopes ate not representative of the high “1e1le
mantle. For example. a high *He™He Baffin Island

sample (439 Ra; Stuat et al., 2003) with the least :

depleted "Nd™ NG inthe suite 0.512730 is inferred
to be crustally contaminated, and is not interpreted to be a
northern hemisphere expression of FOZO-A. Tigh
*He/*He lavas erupted in back-arc environments may
not have lithophile isotope vatios that reflect the high
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e 1le mantle source, owing 1o possible involvement of a3r

slab-derived fluids that may affect the Sr, Nd and Pb
isotopes (even though such fluids may have a neglhgible
effect on the *He*He ratios; Macpherson ct al., 199%).

The high ‘He e signatures observed in deeply erupted

submarine ridge lavas may host S, Nd and Pb isotopes
that reflect entrainment of the shallow depleted mantle.

However, we presume that the high plume flux neces- 2

sary for the generation of a sub-aerially-exposed, ridge-
centered hotspot voleano enhances the plume contribution
in the erupted lavas, thus overwhelming the depleted
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upper mantle component. Theretore, sub-aenally erupted
Bouvet [sland and [eeland high *HeHe lavas are
included i the dawbase (both lavas host S, Nd and Pb
isotapes that more enriched than nearby vidges, and ave
taken o reflect u plume component).

How can high ‘e e, deep mantle signatures be
preserved and become decoupled from the deep mantle
St, Nd and Pb signatures in continental, back-arc and
deep submarine ridge environments? As a stimulus for
further mvestigation, we suggest that the He/(St,Nd,Ph)
ratios may be higher in the high *He/*He mantle
(or mantle melt) than 10 the shallow contamiing
reservoirs found in these three geologieal settings. [n this
way, high *He “He signatures often may be little affected
by contaminition from shallow reservairs while Sr, Nd
and I['b isotopes in such lavas can be strongly decoupled
trom the original high '1le/*1le mantle source.

2. FOZO-A4 vs. FOZO-B: is the difference sediment?

The sotopic enrichment observed in FOZO-A lavas,
paticularly trom Otu, relative to the FOZO-B reservoir
is not easily reconciled with existing models tor the
evolation of the high *He™*He mantle. Oue hypothesis for
the generation of the relative lithophile isotope and trace
clement envichment in high *1e”1e lavas from Samoi
maintains that the high *He*He mantle beneath this
hotspot was recently contammated by rapidly cycled sedi-
ment from the nearby Tonga trench (Class and Goldstemn,
2005). However, evidence from Pb-isotopes rules out
maodern marine sediment contamination of the Samoan
high *He e mantle. The sediment-OIB discriminating
propertics (Hat, 1988) of AT PbA04ph— AP 2 Mpy-
isotope space (1art, 1984) show that Samoan basals and
modern global marine sediments (Plank and Langmuic,
1998) exhibit non-overlapping fields with diverging
wends (g, 3) (Juckson et al,, 2007). Pbasotope data
thus preclude the presence of madem marine sediment
(including sediments outboard of the Tonga wench) in the
FOZO-A mantle sampled by Ofu lavas.

Sr. Nd and Pb-isotope compositions for the high
*He/'He Moorea lava (Hanyu and Kaneoka, 1997)
provide farther evidence that the more enviched radio-
genic isotope compositions of Samoan high *He/*He
lavas (compared to HIG lavas) are not necessavily a result
of rapidly eycled, subducted sediment (Table 1). Moorea
island is not located near a subduction zone, yet the high
"He e Moorea sample has *Sr/*Sr, "*'Nd/'*Nd and
2% ph2¥pb-isotope ratios similar 1o Ofu basalts.

The observation of elevated trace element concentra-
tions in Samoan high *He*He lavas (relative 1o HIG
high “1e He lavas) has been used as evidence for recent
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168K), Samoan hasalts (inclnrlmg Ot basalts) and global marine
sediments exhibit non-overlapping fields witl, diverging trends. The
Sumaan dala are plotted with aceanic sediments (the Tonga sediment is
circled) contributing to global subducting sediment (GLOSN) trom
Plank and Langmuir (1998), Samoan lavas trom Ofi Islanc plot close
fo the highest “He/'He lvas fom Hiwail, Teeland wid Galipagos
Sumnaan xenoliths from Savai’viskond ae plotied as st (Haun et al
1993) Other plotted Ph-isntone data include endmember MORR
(average of nomal ridge segments; Su, in press), EM1 (Piteaim; Ciscle
et al. 2002; Hart and Hacn, cepubl data) and HIMU (Mangais ind
Fubuai; Haun and Hart, 1995, Woodhead, 1996). The figure is adapted
from Jackson et al. (2007), and data for sediments from the Samoan
region (piston: cores) and the ferromanganese rind are from e swne
source. Pheisolope dita preclude the prosence ol modent minne
sedment (including sediment recently subducted into the Tonga
trench) in the FOZO-A muntle sampled by Ofu Lavas

sediment contamination of the Samoan high "He *He
mantle (Class and Goldstein, 2005). Ilowever, our

favored explanation [or the elevated wace clement
concentrations in the Ofu (and Moorea) high "He*He
lavas is that they are products of low degrees of melting,
a mechanism that can greatly increase the trace element
concentrations in lavas relative 1o their mantle source.
Ofu and Moorca high *HePle lavas are alkaline,
a petrologic feature that is uncommon among high

‘He/*He HIG lavas and one that 1s likely to be aresult ot

low degrees of mantle melting. Therefore, the alkaline
nature of Samoan high *He/*He lavas may help resolve
the apparent paradox of high U and Th concentrations in
Samoan lavas that also host high *He/*He ratios (Fig. 4).

Although the Samoan plume exhibits a (low "He*He)
component with recycled sediment, the high ‘Lie™lle
Samoan lavas from Ofu exhibit no evidence for an ancient
recycled sediment component. The most enriched lavas
from Samoa display evidence for an ancient recycled
sediment component (White and Holmau, 19820 Wright
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Fig. 2. ‘He "He Tk for Otu lavas conwared. to other OIBs and MOREs.
Ofu basals ard the high ‘He'He husalt from Moorea (MO-01-01)
ik “He He hasalts from other
Lotspots (see Taole 11. The field tor global OIBs (excluding Samca) and
MORBs is T Cliss inud Guldsten (2005), All Ofu axd Mooren Th

data shown are by 1CP, e the Ot T dit are not cotrected lor olivine

exhubit bigher Th coneentrmtions tha |

or ¢px frachanation. The high Th concentrations m the Of: and Moarea
Ligh: ‘He 'He basalts are interpreted as resulting, from lower degrees of
mehing, @ hypothesis that is consistent witl the alkaline nawire of the
lavas from these twa islands

and White, 1987 Farley et al, 1992), including high
1818y ratios (up to 0.7216) and low “He*He ratios
(=3 Rixz Jackson et al.. 2007), By comrast, ¥/S1*Sr and
"ENAHNU isotopes measuted in Ofu lavas are among
the most depleted in Samoa (Table ). Furthermore, the
positive Pb anomalies and high Ba/Nb ratos that are
diagnostic of sediment are observed in the most iso-
topically enriched Samoan livas, but ave absent in the
isotopically depleted Ot lavas (Ing. 3). The Ba/Nb and
PLPh* measured in the HIG (FOZO-B) high "He*He
lavas are indistinguishable from the Ot lavas, providing
further evidenee that the Ofu lavas do not host an ancicim
recycled sediment componemn (Fig. 3).

4.3 Ofu lavas fiom recyeled harzburgite?

Some recent models advocate o role for ancient,
depleted, high *He/(U+Th) harzburgitic mantle litho-
sphere m the formation of the high ‘He/'He mantle
domain (Anderson, 1998, Paman et al., 2003: Ieber
et al,, 2007). This assumes that cpx-poor melt residues
may have the property of increased ‘Tle/(U + Th) relative
to the initial, unmelted source (Parman ¢t al., 2003), and
thus may preserve high "He*He ratios over time. Trace
element budgets in abyssal peridotites provide a critical
lest of the hypothesis that reeyeled harzburgite is involved
in the source of high “He e OIB lavas. While a harz-
burgite hthology is consisient with the epx-poor nature ol
the upper occanie hithosphere, the abyssal peridotites that

Earth and Planerary Scierce Letters xx 120071 xxv—yxy 9

compuise the upper oceanic hithosphere are too depleted in
incompatible trace clements (Workman and Hart, 2005 ) 10
act as a sowce for the high ‘e e Ofu basalts

For example, the maximum Sr concenmeation that cin be

generated by eauetely low degrees of aggregated fuc

tional meltng ot modemn harzburgitic abyssal peridotites 1

(samples with < 3% cpy, with an average reconstrueted o

bulk rock St concenmugtion of ~0.02 ppm. sce leure
available as supplementary data in the Appendin) is

~3 ppm, which 1s far below the Srconcentations
(=600 ppm) of primary Otu lavas. Trace element budgets .

1 madern abyssal pevidotites suggest thit Olu basilts are
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Fig 5. *IIe/'Ile variation with BaNb and PhyPh* in Samwan lavas and
high *He He saples from Hawaii (Kuiz et al, 19X2), leeland (Hilton
etal.. 1999) and the Galapagos (Kwrz and. Geist. 1999; Saaletal.. 2007).
Ba/Nb ratios in high 'Tle/'ITe lavas from all four hotspots ars low, and do
not indicate imput from manne sediment (GLOSS; Plank and Lapmuin
149%) or uwpper continental crust {UCC; Rucnick and Gao, 2003 ). PyPh*
vales in high ‘Tle "Iz lavas are also unlike GLOSS ané UCC. On the
other hand, the ennicked (EM2) Samoan lavas have low ‘He/'He, bigh
Ba/Nh and high Ph/Ph®, vahies that suggest a recycled sediment
signatare (Jackson etal., 2007). All trace element data were measured by
ICP. hut tmce clement data from the Teeland and Hawaii samples are
urpublished. Ph/Ph*=Phy /J(Cey» Néy), where N significs normaliza-
tion to primitive mantle (McDorowg ] and Sa, 1993),
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not the melts of ancient, recycled (depleted) oceanic upper
mantle lithosphere.

The base of the oceanic mantle lithosphere, which is
thought to have a [herzolitic composition similar to DMM
(Workman and Hart, 2005), can produce the Sr concen-
trations observed in Otu lavas if it is melted at low degrees.
Lherzolitic melt residues also may have the property of
increased "He/(U+Th) relative to the initial, unmelied
source (Parman et al., 2005). However, results from recent
heliam partitioning experiments yield conflicting results
(Heber et al,, 2007; see Section 4.5 below), and suggest
that lherzolitic melt residues will have greatly diminished
YHe/(Li+Th). The observation of radiogenic 'Y 0s/'**0s
in high “He/*He lavas from Iceland is inconsistent with
a purely peridotitic origin of the high *He/*He mantle
(Brandon et al, in press), and suggest that helium
partitioning  studies based on melting pure peridotite
compositions miy not be applicable to melting of the high
*He/*He reservoirs in the earth’s mantle.

4.4. Ofu lavas from chondritic primitive (undegassed)
mantle or regassed mantle?

An alternative hypothesis suggests that high *He/*He
Samoan lavas are derived from chondritic primitive mantle
(referred o as PHEM: Farley etal., 1992). However, such a
model fails to explain the non-chondritic "**Nd/"**Nd and
2pb MPb ratios obtained in Ofu lavas: the "**Nd/'**Nd
and 2°%Ph/2%Ph ratios of Ofu lavas, which are 0.51283
and 19.19, respectively, are much higher than the cor-
responding  chondritic primitive mantle valaes, which
are 0.512611 (Boyet and Carlson, 2005) and 17.675,
respectively.

Another, more recent madel attempts 1o reconcile
the non-chondritic lithophile isotopes in high *He/*He
lavas assumes that a depleted upper mantle source was
“regassed” by mixing with a small proportion of heliam-
rich, high *He/*He chondritic mantle (Stuart et al., 2003;
Ellam and Swart, 2004). This model suggested that
regassed, depleted mantle is in the source of the high
“He/*He ratios found in basalts associated with the proto-
Ieeland plume (PIP). However, Ofu lavas fall well outside
of the array formed by PIP lavas in *He/*He—"**Nd/'**¥Nd-
isotope space (Ellam and Stuart, 2004), highlighting the
need for a model that includes a heterogeneous high
e He mantle.

4.5 Implications of ** Nd/***Nd for “re-envichment" of
the high *lie/'Ile mantle

The discovery of "Nd/'**Nd ratios in accessible
terrestrial rocks that are higher than chondrite (Boyet and

Carlson, 2005) has important consequences for the sos
origin and cvolution of the two FOZOs. The terrestrial 506
" Nd/"**Nd anomaly indicates that all measured terres- su7
trial rocks were derived from a reservoir that had sw
superchronditic Sm/Nd during the lifetime of "**Sm, as 500
imperfect mixing of nucleosynthetic material in the solar s10
nebula (Ranen and Jacobsen, 2006) does not explain the s11
terrestrial excess in "¥"Nd (Hidaka etal., 2003; Andreasen 512
and Sharma, 2006; Carlson et al., 2007; Wombacher and s13
Becker, 2007). For example, if Sm/Nd ratios were s14
heterogeneously distributed in the solar nebula at the s1o
time of accretion, bulk silicate carth (BSE) may have sin
acquired higher Sm/Nd and thus higher time-integrated 517
N/ Nd ratios than chondrites (Boyet and Carlson, 1s
2006). If the assumptions for a non-chondritic BSE are 519
valid (Boyet and Carlson, 2006), then both FOZO-A and 52
FOZO-B are isotopically enriched relative to BSE (Fig. 6, sz
top panel). Alternatively, if BSE has chondritic Sm/Nd, 52
the terrestrial '**Nd/'**Nd anomaly in accessible terres- 522
trial mantle rocks could have been generated by an early, 524
global terrestrial differentiation event within 30 Myr of 525
accretion (Boyet and Carlson, 2003). In this case, the s
resulting early depleted reservoir (EDR) has superchon- 527
dritic Sm/Nd and evolves superchondritic "**Nd/'™Nd (a sz
complementary hidden early enriched reservoir, or EER, s20
cevolved sub-chondritic "**Nd/'**Nd; Boyet and Carlson, 530
2005). The FOZO reservoirs exhibit " Nd/'"**Nd ratios 531
that are lower (more enriched) than the minimum 532
NA'"™Nd of the EDR (Fig. 6, bottom panel). If the 523
FOZO reservoirs (like all accessible terrestial mantle 53s
rocks) were ultimately derived from the EDR at some sas
point in earth’s history, then the high *He/*He FOZO 52
mantle has been re-enriched since the early ditterentiation 527
event. In summary, if the terrestrial "**Nd/'**Nd anomaly 53
relative to chondrites is due to the decay of "**Sm, the 520
observed "**Nd/'"**Nd ratios in FOZO-A and FOZO-B s
lavas require that they were re-enriched relative to either a 541
non-chondritic BSE or the EDR.

There are a number of mechanisms by which the high s
*He/*He mantle could have been re-enriched. However, 544
the enriched material added to the high ‘He e res- sa
ervoirs must also have the property of preserving a high 546
*He/*He signature over time. Thus, re-enrichment by 547
addition of recycled sediments seems unlikely, as lavas sas
exhibiting clear evidence of sediment recycling, such as s
the high ¥'Sr/**Sr Samoan lavas from Samoa, exhibit s
low *He/*He (Jackson et al., 2007). On the other hand, s:1
re-enrichment by addition of recycled (oceanic crust) 5m2
eclogite plums to a high *He/*He mantle source may not ssa
necessarily diminish the high *He/*He signature (Bran- 554
don et al., in press). As an alternative to re-enrichment by sss
eclogite addition, depleted oceanic mantle lithosphere s:6
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that has been re-enriched (metasomatized) with melt may
serve as a source for high *He*He basalts (White, 2003).
However, if the re-enriching melt is a result of imperfeet
meht extraction near a mid-ocean ridge (Workman et al.,
2004), the *He/(U+Th) of the melt will have to be
similar 1 or higher than DMM to preserve high *He/*He
in the recycled upper oceanic mantle lithosphere over
time (i.e., followmng subduction and isolation in the
lower mantle). This condition requires that the compat-
ibility of helium is similar 1o or lower than U and Th
during peridotite melting.

However, such partitioning behavior is inconsistent
with the helium partitioning results of Parman et al.
(2005). Recent helium partitioning results of Heber et al.
(2007) do suggest that He is less compatible than U and
Th during peridotite melting (assuming a DMM
lherzolite lithology from Workman and Hart (2003)
and U and Th partition coefficients from Kelemen et al,
(2004)). If the partitioning results of Heber et al. (2007)
are correct, then oceanic mantle lithosphere hosting
trapped melt may preserve high *He*He over time.
Thus, long-term isolation of melt-impregnated oceanic
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mantle lithosphere may provide a viable mechanism for &7
preserving a high ‘He*He signature, and may have 5%
potential for describing the radiogenic isotope composi- 531
tions and trace clement budgets observed in global high ss2
*He*He lavas. 583

4.6. Origin of the hemispheric separation of FFOZO-A ss1
and FOZO-B: hints from the DUPAL anomaly 58

The observation of a southern hemisphere high ssa
‘He/*He domain that is isotopically more enriched 587
than its northem hemisphere counterpart is reminiscent sss
of the DUPAL anomaly (Hart, 1984)-a globe-encircling sss
feature of isotopic enrichment observed primarily in the sw
southern hemisphere mantle—and indicates a long-term z01
separation of the carth’s northern and southem hemi- se2
sphere high *He*He mantle. While there are a number of soa
processes by which the re-enriched high *He/*He mantle 50
can be generated, the mechanisms responsible for the sos
hemispheric separation, and long-term preservation, of sp
two isotopically distinet FOZO rescrvoirs are clusive. s

Like the high *He/*He reservoir (Kurz et al., 1982; sos
Hart et al., 1992) the DUPAL anomaly was suggested to 50
be an ancient feature residing in the lower mantle (Hart, 600
1988: Castillo, 1988). The DUPAL anomaly is the only e

Fig. 6. Implications of terrestrial ""N&/'**Nd anomalies for the
NG NG evolution of BSE and the origin of the two FOZOs_ If
MING NG ratios
(Boyet and Carlson, 2005) were generated by 45Sm decay, cither 1.}

the observed superchondritic terrestrial mantle

(top panel) the canth acereted from non-chondritic matenial and BSE hax
superchondritic Sm/Nd, or 2.) (bortom panel) BSE is chondritic but
underwent an early depletion event and all available terrestrial mantle
rocks denve from an early depleted reservour (EDR) with super-
chondritic Sm/Nd. All caleulations arc afier Boyet and Cardson (2005,
2006), and asswume a chondrite averuge 178 m**Nd of 0.1948,
NG N 0f 0.512611, a solar system initial ***Sm/**Sm of 0.008,
and an identical age 0f4.567 Ga for the accretion time of the earth (1op
panel) and for the early differentiation event (bottom panel). Given
these assumptions, the non-chondritic BSE and the EDR require
H#73mA ¥ Nd matios of ~0.209 to generate the INA NG anomalies
that are 20 ppm higher than chondrite (later formation times for the
accretion of the earth, or for the early differentiation event. require even
higher SnwNd ratios). Thus, the lowest present-day ' Nd/A**N¢ value
for a non-chondritic BSE and the EDR is 0.51304 ('**Nd=+8.4).
Both FOZO0s exhibit '**Nd/ *Nd values lower than the non-chondritic
BSE (top panel) and the EDR (bottom panel), and both FOZOs thus
exhibit evidence for re-enmhmmr Starting at 3 Ga, the DMM reservoir
evalved by conti ex of conti | crust (Workman and
Hart, 200%) trom the non-chondritic BSE (top panel) or from the EDR
(botiom panel); DMM calculations are identical to Bovet and Cardson
2006). The trajectaries of CC and EFR are estimated. CC is not
extracted as asingle event, but is continuously extracted afier 3 Ga. The
MORE field is from Boyet and Carlson (2005) and FOZO-A and
FOZO-B are from Table 2; the Baffin Island (Baff. Is.) high ‘He/*He
lava (Stuart ot al, 2003) is plotted for reference. enad =P N
PNt pnptel ) PN Nedepoqare() = 17 % 10,
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other mantle domain suggested to occupy similar,
hemispheric proportions. The DUPAL anomaly shows
that the southermn hemisphere exhibits generally more
isotopically enriched mantle domains than the northem
hemisphere, and we find a similar southern hemisphere
enrichment in the high *He/*He FOZO-A reservoir; the
depletion in the northern hemisphere DUPAL reference
reservoir is mirrored in the FOZO-B reservoir. The
geographic and geochemical similarities between the
FOZO and DUPAL reservoirs suggest that their origin
may have been linked.

One hypothesis for the formation of the DUPAL
domain is that oceanic mantle and crustal lithosphere were
injected into the mantle, thereby enriching this region
of the mantle. This model has the advantage of being
compatible with two of the possible re-enrichment
4.5: 1.) oceanic crustal eclogite plums were added to the
depleted high *He/*He mantle via subduction, or 2.) re-
enriched (metasomatized by melt near a mid-ocean ridge)
oceanic mantle lithosphere was subducted and isolated in
the (deep?) mantle and became the high ‘He/*lle mantle
domain. These injection models may produce a random
pattern of isotopic enrichment throughout the mantle, with
no coherent hemispheric pattern (Hart, 1984). However,
if injection were focused around the perimeter of a
supercontinent during a period of anomalous subduction,
a hemispheric pattem in the FOZO and DUPAL reservoirs
might emerge. This model would suggest that the
hemispheric and isotopic separation may be a surviving
artifact of the paleo-arrangement of the subduction zones
and continents during the formation of the FOZ() reser-
vours. While the timing of the formation of the FOZO
reservoirs is unknown, we note that the Northermn
Hemisphere Reference Line (NHRL) separates the two
FOZOs in “Ph*™Ph "*Pb/™Pb-isotope space (see
figure included in the supplementary data in the
Appendix), possibly suggesting a similar formation time
(~1.8 Ga) for the DUPAL and FOZO reservoirs (Pb-
isotope ratios in high *He/*He lavas are displaced from
the Geochron and preclude coeval formation of the FOZO
and the hypothetical EDR reservoirs).

4.7. FOZO-A and IFOZO-B: implications for mantle
dynamics

A clear implication of the isotopic and geographic
separation of the two high *He/*He reservoirs is that they
had to be isolated from each other for long timescales. The
long-term separation of the two FOZO domains requires
preservation despite convective stirring, a mechanism that
efficiently attenuates mantle heterogeneities (van Keken
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et al, 2002). However, the hemispheric heterogeneity in 652
the high *He/*He reservoir is apparently not a feature 653
preserved in the convecting upper mantle sampled by s34
mid-ocean ridges (see Sections 34.1). Thus, the shallow sss
mantle may not be an ideal location for the preservation of 6se
the FOZO-A and FOZO-B mantle domains. However, the ss7
less rapid convective motions of the lower mantle may sss
mike it & more suitable home for the FOZOs (Hart et al., s50
1992; Macpherson et al., 1998; van Keken et al., 2002; 660
Class and Goldstein, 20035). 661
One mechanism for the preservation of hemispheric- 662
scale heterogeneity may be the isolation of the high e
*He/*He domains in a dense boundary layer at the core— se
mantle boundary (CMB). Seismic tomography suggests 65
that some hotspots, like Samoa and Hawaii, may well s66
originate as upwellings from this region of the mantle a7
(Montelli et al., 2006), and many hotspots with high ess
*He/*He have been associated with velocity anomalies in s
the deep mantle (Courtillot et al., 2003). The post- 670
perovskite phase proposed to exist at this depth may 671
exhibit a sufficiently large density contrast to isolate it 672
from the overlying convecting mantle (Guignot et al,, 67
2007), and a new seismic technique may allow detection s74
of this phase at the base of the mantle (van der Hilst et al., o7
2007). Exploiting this new seismic tool, it may be pos- 676
sible to better resolve the spatial relationships between a7
velocity anomalies at the CMB and high *He/*He ocean o7
islands at the earth’s surface. Thus, a contluence of ¢7u°
geochemical and geophysical observations may ulti- sso
mately reveal the mechanism responsible for the long- 681
term preservation of the hemispherie heterogencity in the 682
deep mantle, a feature that hinges on new observations of sz
high ‘He/*He in Samoan lavas trom Ofu. o84

5. Conclusions 685
From this study we draw the following conclusions: sse

(1) New high ‘*He/He ratios (19.5 33.8 times oxr
atmospheric) from Ofu island are the highest sss
from Samoa (and the southemn hemisphere), and esu
place Samoa in the same category of high *He/*He 59
hotspots as Hawaii, Iceland and the Galapagos. 601

(2) The new Ofu data reveal that at least two distinct 602
high *He/*He reservoirs—one more isotopical- 602
ly enriched than the other exist in the earth’s es
mantle. 595

(3) The two high *He/*He reservoirs separate in the o6
earth’s northem (FOZO-B, boreal) and southem se7
(FOZO-A, austral) hemispheres. 608

(4) The trace element budgets and isotopic composi- o
tions of the new high *He/*He samples from Samoa 7o
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are inconsistent with derivation from recycled
harzburgite. Additionally, the Samoan high
e He mantle does not appear to be contaminated
with rapidly cycled sediment from the Tonga sub-
duction zone. Furthermore, the Nd and Pb isotopes
of'the highest '1le/*He Samoan basalts demonstrate
that they were not derived from a chondritic prim-
itive mantle.
(5) If the terrestrial **Nd/'**Nd anomaly relative to
chondrites is due to the decay of '**Sm, the ob-
served "N/ Nd ratios in FOZO-A and FOZO-
B lavas require that they were re-enriched relative w
cither a non-chondritic BSE or the EDR.
The high ‘He/*He mantle is an ancient reservoir,
and the discovery of isotopically distinet northern
and southern hemisphere high *He/*He mantle
domains suggests that these regions of the mantle
escaped the convective mixing and stirring that has
efficiently attenuated heterogeneities in the upper
mantle. This observation provides an important
constraint for future dynamic and isotopic models
describing the evolution of the earth’s mantle.
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Supplementary Material Fig 1. Upper panel: Location map for samples taken from Ofu
and Olosega islands that are reported in this study. Sarnples were taken from the major
geologic formations recorded by Stice and McCoy (1968). Lower Panel Ofu Island
relative to the subaerial islands (Savai'y, Upolu, Tutuila and Ta'u) and submarine
volcanoes (Muli, Malumalu and Vailulu'u) of the Eastern volcanic province (map from
Workman et al. (2004)). Papatua and Uo Mamae are 1solated, “off-ax1s” seamounts.

Note Samoa’s proximity to the northern termination of the Tonga arc/trench system
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Supplementary Material Fig. 2. The separation of FOZQ-A and FOZO-B in Pb-isotope
space. Top panels: Intwo dimensional Pb-isotope space (me/me vs. 2%PbA%PY and
D7pp %Py vs 2@ Pb/P*Pb 1sotope spaces), the two FOZOs can be separated by a line
However, the Northern Hemisphere Reference Line (NHRL) from Hart (1984) does not
appear to divide the two FOZO's in T8Po/2*Pb — 2 Po 2Py space, but does divide them
in 27PbA%Pb — %P6 2Ph pace. Open black diamonds are global OIB data. Lower
panel: FOZO-A and FOZO-B separate in 3D Pb-isotope space, indicating that Pb-
isotopes are consistent with the hemispheric separation of the two high *He/*He

reservoirs. Pb-isotope data used to define FOZO-A and FOZO-B are found in Table 2
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Supplementary Material I'ig. 3. Modal abundance of ¢px compared to reconstructed
whaole-rock Sr concentrations in abyssal peridoties, a proxy for recveled. depleted.
oceanic upper mantle lithosphere. Sr concentrations in abyssal peridotites diminish
rapidly with small reductions in epx modal abundance, a result of melt extraction [rom
DMM i a fractional melting regime. Harzburgites and other epx-poor lithologics that
are produced in the mantle lithosphere at mid-ocean ridges are extremely trace element
depleted. These peridotites may not be good candidates for a source that generates the
enriched trace-element budgets observed in Ofu lavas. The abyssal peridotite
compilation accompanies Workman and Hart (2005). and the estimate for the Sr
concentration in DMM concentrations is from the same source. Samples with modal

plagioclase have been excluded.
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Chapter 4

High ‘He/*He hotspot lavas expose the Earth’s
“missing” titanium, tantalum and niobium
(TITAN): The missing link between continental
crust and depleted mantle found?

Abstract

A shortage of the elements titanium, tantalum and niobium (TITAN) exists in the
Earth’s shallow geochemical reservoirs—the depleted MORB (mid-ocean ridge basalt)
mantle and continental crust—and the location of these missing elements is unknown.
Here we report evidence for a global, TITAN-enriched reservoir sampled by OIBs (ocean
island basalts) with high *He/'He ratios, an isotopic signature associated with the deep
mantle. Excesses of Ti (and to a lesser degree Nb and Ta) correlate remarkably well with
*He/'He in a dataset of global OIBs. The observation of TITAN enrichment in high
’He/*He OIB lavas suggests that the mantle domain hosting the Earth’s “missing” TITAN
is sampled by deep, high *He/*He mantle plumes. The TITAN enrichment in the high
*He/*He reservoir has profound implications for the origin of the high *He/*He mantle
component, and suggests that, far from being a primitive reservoir, or simply a depleted
peridotite reservoir, the high ’He/*He mantle sampled by OIBs appears to host a
component of recycled, refractory, rutile-bearing oceanic crust that was processed in
subduction zones.

*Submitted to Geochemistry, Geophysics, Geosystems (G3) as: M. G. Jackson, S. R.
Hart, A. E. Saal, N. Shimizu, M. D. Kurz, J. S. Blusztajn, A. C. Skovgaard, High ‘He/*He
hotspot lavas expose the Earth’s “missing” Titanium, Tantalum and Niobium (TITAN):
The missing link between continental crust and depleted mantle found? Submitted

October, 2007.
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1. Introduction

The standard model for the evolution of the silicate earth maintains that the
depleted MORB (mid-ocean ridge basalt) mantle (DMM) is the residue of continental
crust (CC) extraction from an early primitive mantle (Jacobsen and Wasserburg, 1979;
O’Nions et al., 1979; Allegre et al., 1980; Hofmann, 1988, 1997). If the earth has
chondritic abundances of the refractory elements, DMM and CC must be geochemically
complementary reservoirs within the earth. However, the TITAN trio of elements are
prominently depleted in the continents (Rudnick and Gao, 2003), and their absence is not
balanced by a corresponding enrichment in DMM (Workman and Hart, 2005). Thus,
another deeper reservoir hosting the missing TITAN elements has been proposed to exist
in the earth (McDonough, 1991; Rudnick et al., 2000; Kamber and Collerson, 2000).

Oceanic plates are formed by melting and depletion of the upper mantle at mid-
ocean ridges. The resulting oceanic lithosphere, composed of mafic oceanic crust and the
uppermost region of the depleted peridotite mantle, is subducted back into the mantle at
trenches, thereby contributing to its compositional heterogeneity (Hofmann and White,
1980, 1982; Chase, 1981; Zindler and Hart, 1986; van Keken et al., 2002). During
subduction, the mafic portion of the plate is dehydrated and may be partially melted, and
the resulting lavas erupted at subduction zone volcanoes are depleted in the TITAN
elements. Incompatible elements are largely lost to the overlying mantle during
dehydration and melting of the eclogite portion of slabs. By contrast, titanium-rich
phases, such as rutile, may preferentially sequester the TITAN elements in the mafic
portion of the downgoing slab, balancing the depletion observed in subduction zone lavas
(Green and Pearson, 1986; Ryerson and Watson, 1987; Brennan et al., 1994; Foley et al.,
2000; Schmidt et al., 2004; Kessel et al., 2005). Refractory, rutile-bearing eclogites have
been subducted in large quantities over geologic time, and may form a reservoir in the
mantle that hosts the Earth’s missing TITAN (McDounough, 1991; Rudnick et al., 2000).

TITAN enrichment in hotspot lavas also has enormous potential as a geochemical
tracer for recycled oceanic plates (Rudnick et al., 2000). If TITAN-enriched refractory
eclogites are returned to the surface in mantle plumes, their presence would be evident as

TITAN enrichment in hotspot lavas. A common mantle dynamics paradigm maintains
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that mantle plumes complete the process of recycling by transporting plate remnants from
the core-mantle boundary back to the surface, where they melt and erupt as ocean island
basalts (OIBs) (Hofmann and White, 1980, 1982; Chase, 1981). However, the reservoir
hosting the Earth’s missing TITAN has been difficult to detect in hotspot lavas
(McDonough, 1991; Rudnick et al., 2000).

Rare, high *He/*He (>30 Ra, ratio to atmosphere) ratios in lavas erupted at some
hotspots, including Hawaii, Iceland, Galapagos and Samoa, are thought to be tracers of
buoyantly upwelling mantle plumes that sample an ancient reservoir residing in the
mantle (e.g., Kurz et al., 1982; Hart et al., 1992). Variously called FOZO (Focus Zone;
Hart et al., 1992; Jackson et al., 2007a), PHEM (Primitive Helium Mantle; Farley et al.,
1992) or C (Common; Hanan and Graham, 1996), the precise location (shallow or deep
mantle) of the high *He/*He reservoir is a source of intense debate (e.g., Anderson, 1998).
Nonetheless, there is a growing consensus that this reservoir hosts a significant
component of depleted mantle peridotite (e.g., Hart et al., 1992; Anderson, 1998; Parman
et al., 2005; Heber et al., 2007). Recent work suggests that the high *He/*He mantle may
also host a component of recycled eclogite (Dixon et al., 2001; Brandon et al., 2007). In
this paper, we argue that the high *He/*He mantle sampled by OIBs hosts a component of
recycled, refractory eclogite, and that this component balances Earth’s budget for the

elements titanium, tantalum and niobium (TITAN).

2. New Data and Observations

We report new trace element data by ICP-MS (inductively coupled plasma mass
spectrometer) on the highest ’He/*He lavas from Hawaii (32.3 Ra; Kurz et al., 1982),
Iceland (37.7 Ra; Hilton et al., 1999) and Samoa (33.8 Ra; Jackson et al., 2007a) (see
Table 1). In Fig. 1, these new data are presented together with previously published ICP-
MS trace element data for the highest *He/*He Galapagos lava (30.2 Ra; Kurz and Geist,
1999; Saal et al., 2007). These high ’He/*He lavas exhibit Ti, Ta, and Nb excesses, or
positive anomalies, relative to elements of similar compatitiblity in peridotite (on a
primitive mantle normalized basis, see Fig. 1). While the association of positive TITAN

anomalies and high *He/*He (or plume) signatures were previously observed regionally in
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Hawaii (Dixon et al., 2001), Iceland (Fitton, 1997) and the Galapagos (Kurz and Geist,
1999; Saal et al., 2007), we suggest that the large, positive TITAN anomalies are a global
phenomenon in high *He/'He OIBs. The primitive-mantle normalized trace element
patterns (spidergrams) of the highest *He/*He lavas from Hawaii, Iceland, Galapagos and
Samoa all share prominent, anomalous enrichment in the TITAN elements compared to
elements of similar compatibility in peridotite (Fig. 1). In fact, the Nb/U ratios in the
high *He/*He OIB lavas are all higher than the average Nb/U value of 47 previously
proposed for OIBs and MORBs (Hofmann et al., 1986).

By contrast, the mantle endmembers (Zindler and Hart, 1986) with low *He/*He,
including HIMU (high ‘p’, or 23 8U/204Pb; Graham et al., 1992; Hanyu and Kaneoka,
1997), EM1 (enriched mantle 1; Honda and Woodhead, 2005), EM2 (enriched mantle 2;
Workman et al., 2004; Jackson et al., 2007b) and DMM exhibit spidergrams (Hart and
Gaetani, 2006) that lack such pronounced TITAN anomalies (Fig. 1). While HIMU
basalts can have positive Nb and Ta anomalies (Weaver et al., 1987; Weaver et al., 1991;
Chauvel et al., 1992), they generally have lower anomalies than high *He/*He lavas, and
can even have negative Nb anomalies (Sun and McDonough, 1989). Importantly, HIMU
lavas exhibit flat or negative Ti-anomalies (McDonough, 1991), and thus lack the
positive Ti-anomalies observed in high *He/*He lavas.

Available data (see Appendix A) also indicate that the TITAN enrichment is
enhanced with increasing *He/*He in OIB lavas (Fig. 2): Large, positive Ti (high Ti/Ti*),
Nb (elevated Nb/Nb*) and Ta (Ta/Ta*, not shown) anomalies are observed in the highest
*He/*He basalts. While all high *He/*He lavas (>30 Ra) have large, positive TITAN
anomalies, not all lavas with positive TITAN anomalies have high *He/*He. In the plots
of TITAN anomalies vs. *He/*He, the OIB data outline a “wedge-shaped” pattern. For
example, Cape Verde lavas have large, positive Nb/Nb* values, but have low *He/*He
(Fig. 2). However, high *He/*He lavas with negative TITAN anomalies are absent in the
available dataset.

High *He/*He lavas exhibit moderately radiogenic Os-isotopes
("0s/'™0s>0.135), an observation that is contrary to previous suggestions that this

reservoir hosts unradiogenic '*’Os/'**Os ratios (Hauri et al., 1996) similar to DMM
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(Standish et al., 2002) (Fig. 2). Radiogenic '*’Os/ '880s in the high *He/*He reservoir is
consistent with the positive correlation observed between *He/*He and '*’0s/'**0s in
Icelandic hotspot lavas (Brandon et al., 2007). However, radiogenic 870s/'%80s is not
unique to the high *He/*He mantle: the low *He/*He mantle endmembers EM1 and
HIMU also have radiogenic '*’Os/'®0s. Importantly, unradiogenic '*’Os/'**Os is not

observed in high *He/*He OIB lavas.

3. The case for a refractory, rutile-bearing eclogite component in the
high *He/*He mantle sampled by OIBs
3.1. TITAN enrichment and high '*’Os/'"**Os: Evidence for refractory

eclogite.

The lack of large TITAN anomalies in DMM (Fig. 1) demonstrates that phases
contained in upper mantle peridotites do not preferentially sequester the TITAN elements
relative to other incompatible lithophile elements. By contrast, subduction zone lavas are
TITAN-depleted, indicating that processes operating in their mantle source can
fractionate TITAN from the other lithophile trace elements. It was suggested that
eclogite melting in subduction zones may generate rutile-bearing residues that are
residually-enriched in TITAN elements (e.g., McDonough, 1991). Experimental studies
indicate that the TITAN elements are strongly partitioned into rutile during eclogite
melting (Green and Pearson, 1986; Ryerson and Watson, 1987; Ayers, 1998; Stalder et
al., 1998; Foley et al., 2000; Schmidt et al., 2004; Kessel et al., 2005), thereby generating
positive TITAN anomalies in refractory, rutile-bearing slab residues that balance the
depletion observed in subduction zone lavas.

Like TITAN-enrichment, radiogenic '*’Os/"**Os is not a geochemical signature
typically associated with a peridotite reservoir. While peridotites tend to have low Re/Os
and "¥’0s/'®0s, mafic igneous rocks generally exhibit elevated Re/Os and '*’Os/'*0s
ratios, (Walker et al., 1989; Reisberg et al., 1991; Hauri and Hart, 1993; Reisberg et al.,
1993; Snow and Reisberg, 1995; Becker, 2000). Oceanic crust enters subduction zones
with initially high Re/Os, and owing to moderate compatibility of Re in garnet, oceanic

crust may retain high Re/Os (and with time, radiogenic '870s/"**0s) ratios during
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subduction zone processing in the garnet stability field (Righter and Hauri, 1998). While
it has been suggested that Os and Re are extracted from the slab in the subduction zone
(e.g., Brandon et al., 1996; Mclnnes et al., 1999; Becker et al., 2000), we note that the
Re/Os ratios of altered oceanic crust (‘*’Re/'®0s averages of 349 and 353 in composites
of two separate drill cores; Peuker-Ehrenbrink et al., 2003) and oceanic crust gabbros
("YRe/"™®0s average of 472, Hart et al., [1999]) are similar to the ratios found in
metabasalts metamorphosed in paleosubduction zones (median '*"Re/'**0s = 326,
including eclogites, blueschists and mafic granulites; Becker, 2000). Thus, there is ample
evidence supporting the contention that high Re/Os ratios can be preserved in the slab
during subduction zone metamorphism. Like TITAN enrichment, the observation of
moderately radiogenic '*’Os/'**Os in high *He/*He lavas is consistent with a refractory
eclogite component in their mantle sources, and not consistent with the high *He/*He

reservoir being primitive mantle.

3.2. Depletion in the *He-producing elements (U and Th) and TITAN

enrichment.

While recycled oceanic crust has been suggested to be ubiquitous in the mantle
sources beneath hotspots (Sobolev et al., 2007), the close association of a refractory,
TITAN-enriched mafic component with the high *He/*He mantle may appear
contradictory since eclogites are quantitatively degassed in subduction zones (Staudacher
and Allegre, 1988; Moreira and Kurz, 2001; Moreira et al., 2003). Far from hosting the
high *He/*He signature in the mantle source of high *He/*He OIB lavas, the eclogite will
instead contribute *He (via alpha decay of U and Th) and generate low time-integrated
*He/*He ratios. However, the long-term *He production of an eclogite can be greatly
reduced by melt (or fluid) extraction of highly incompatible elements like U and Th from
the slab during subduction processing. By contrast, the TITAN elements will be
conserved if melt (or fluid) extraction occurs in the presence of rutile (e.g., McDonough,
1991). In this scenario, a positive TITAN anomaly indicates U and Th (including other
incompatible trace elements, like La, Tb and Sm) depletion in a slab. The positive

TITAN anomaly is formed by relative enrichment of TITAN due to conservation of Ti,
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Ta and Nb and concomitant loss of U and Th. Therefore, the refractory eclogite model of
McDonough (1991) is potentially consistent with the preservation of a high *He/*He in
the mantle. A U- and Th-depleted, TITAN-enriched eclogite will not produce significant
post-subduction radiogenic “He ingrowth (see below), and may explain why TITAN
enrichment is associated with high *He/*He signatures.

By contrast, subducted oceanic crust that conserves much of its original U and Th
budget through the subduction zone will not possess positive TITAN anomalies and will
produce more “He over time than a U and Th-depleted slab. Consequently, the abundant
*He produced by an undepleted slab would infect the surrounding mantle with radiogenic
“He due to rapid diffusion of helium in the mantle (Hart, 1984; Trull and Kurz, 1993;
Hart et al., 2007), and is not compatible with the preservation of a high *He/*He signature
in the mantle. This hypothesis is consistent with the observation that high *He/*He lavas

never have negative (or flat) TITAN anomalies.

3.3. Refractory eclogite and high *He/*He peridotite: the raw materials for
the high *He/*He OIB mantle.

While refractory, rutile-bearing eclogite possesses positive TITAN anomalies, it
does not have intrinsically high *He/*He ratios: high *He/*He signatures in the TITAN-
enriched, high ’He/*He OIB source must be derived from another lithology. Ancient
mantle peridotites can potentially preserve elevated *He/*He ratios over time (Hart et al.,
1992; Anderson, 1998; Parman et al., 2005; Heber et al., 2007; Jackson et al., 2007a) if
they were isolated from the convecting mantle early in Earth’s history. However, mantle
peridotites do not generally exhibit positive TITAN anomalies (McDonough, 1991).
Alone, neither eclogite nor peridotite can contribute both TITAN-enrichment and high
*He/*He to the mantle source sampled by high *He/*He OIB lavas. Both refractory
eclogite and the high *He/*He peridotite are required to generate such a mantle source.
Thus, an important question is how the TITAN-enriched eclogites came to be associated

(i.e., mixed) with high *He/*He peridotites in the high *He/*He mantle sampled by OIBs.
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3.4. Peridotite and eclogite portions of ancient subducted slabs: A high
‘He/*He, TITAN-enriched “package”.

One possible explanation for the generation of a hybrid lithology in the high
*He/*He OIB mantle is that the crust and mantle components of ancient, subducted
oceanic lithosphere contain the raw materials required for the generation of a mantle
source sampled by high *He/*He basalts. TITAN-enriched refractory eclogite exists at
the top of the slab, and ancient high *He/*He asthenospheric peridotite (with the same
composition as contemporary DMM) is coupled to the underside of the downgoing plate.
After processing in subduction zones, the crustal portion of the subducted plate hosts
TITAN enrichment, and the asthenospheric DMM coupled to the bottom of the
downgoing plate remains unscathed by subduction zone processes. The two components,
TITAN-enriched eclogite and high *He/*He asthenospheric peridotite, should be
intimately associated as a “package” in space and time within a subducted plate, a
geometry that is conducive to later mixing in the mantle.

We present a simple model for the generation of the high *He/*He mantle sampled
by OIBs, whereby the eclogitic and peridotitic components of the oceanic plate are
subducted and isolated from the convecting mantle at 3 Ga and mixed during storage in
the lower mantle (Fig 3). We assume that the upper mantle began with a primitive
composition (McDonough and Sun, 1995) at 4.4 Ga, and evolved by continuous
depletion to the present-day DMM composition of Workman and Hart (2005). Oceanic
plates were continuously injected into the mantle over this time period, and the eclogitic
and peridotitic portions of these subducted plates were thoroughly mixed in the lower
mantle and were later sampled by upwelling mantle plumes and erupted at hotspots.

In order to develop a quantitative geochemical model for the *He/*He,
'%70s/"*¥0s, and TITAN of the two lithologies (peridotite and eclogite) in a subducted

plate, we make the following assumptions about their compositions over time:
i. *He/*He of ancient asthenospheric DMM peridotite and refractory eclogite: The

*He/*He of DMM is thought to have decreased significantly over time (Fig. 3). However,

portions of asthenospheric DMM peridotite that are isolated with the downgoing plate
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(i.e., removed from the upper mantle) are not subject to further depletion. In the model,
the subducted asthenospheric DMM peridotite “locked in” the high *He/*He and *He/**U
ratios of ancient, less-depleted DMM, and evolved by closed-system decay of U and Th.
By contrast, if the subducted portion of ancient asthenospheric DMM had remained as
part of the convecting asthenosphere, it would have evolved by continuous melt
extraction to become modern DMM with low *He/*He and *He/***U (see Fig. 3 and
Appendix B for details of ’He/*He evolution in the mantle). Consequently, following
subduction and isolation, the *He/*He of the isolated, ancient DMM rapidly diverged
from (and preserved higher *He/*He than) its upper mantle counterpart, which continued
to be depleted (in He relative to U and Th, see Appendix B) by continental and oceanic
crust extraction (Fig. 3).

By comparison, we model the *He/*He evolution of the subducted eclogite using
the trace element composition of a hypothetical refractory eclogite calculated by
McDonough (1991) (see Fig. 4 for a spidergram of the refractory eclogite). The eclogite
is assumed to start with a *He/*He ratio equal to DMM at its time of isolation, and
following over 99% degassing in the subduction zone, the U and Th of the eclogite
generates “He by decay, thus rapidly diminishing the *He/*He of the eclogite over time
(Fig. 3, Table 2). Degassing of the eclogite portion of the subducted slab is simulated by
increasing the >**U/’He of the eclogite by a factor of 1,000 relative to contemporary

DMM.

ii. '*’0s/"®0s of ancient asthenospheric DMM peridotite and refractory eclogite:
The '*’0s/"**0s of DMM and Primitive Mantle are not very different (0.12-0.13; Standish
et al., 2002; Meisel et al., 2001), and thus the isolated, ancient asthenospheric peridotite
portions of the subducted plates are assumed to have an intermediate present-day
composition (0.125). DMM is also assumed to have had an Os concentration of 3000 ppt
over geologic time. In contrast to the asthenospheric DMM peridotite, the eclogitic
portion of the subducted plate likely evolved extremely radiogenic 8705/ 0s over time
(Fig. 3). The '%70s/"*¥0s evolution of the refractory eclogite is modeled using the median

"%Re/"®*0s (325) and Os (6 ppt) from eclogites metamorphosed in paleosubduction zones
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reported by Becker (2000): earlier subduction injection of eclogites with this
composition yielded higher '*’0s/'®0s in the present day. The high calculated present-
day '870s/"*80s ratios in the recycled eclogites are similar to the most radiogenic

eclogites presented by Becker (2000).

iii. TITAN anomalies of ancient asthenospheric DMM peridotite and refractory
eclogite: The trace element content of the present-day asthenospheric DMM peridotite is
assumed to be the same as the DMM compositions calculated by Workman and Hart
(2005). However, DMM has likely become increasingly depleted throughout geologic
time. We assume that DMM began with a primitive mantle composition (McDonough
and Sun, 1995) and evolved by continuous depletion until the present day. Using the
continuous transport equations in Appendix B, the trace element budget of DMM is
calculated at various times, and “snapshots” of DMM compositions through time are
plotted as spidergrams in Fig. 4 (see Table 2 for compositions). By contrast, the
subducted eclogites are assumed to have the same present-day trace element composition
as the hypothetical refractory eclogite from McDonough (1991), regardless of the
isolation time (see Table 2). This hypothetical eclogite has a trace element composition

similar to the eclogites with the largest positive TITAN anomalies presented in Becker et

al. (1999) (see Table 2).

3.5. Mixing asthenospheric DMM peridotite with refractory eclogite.

The high *He/*He, moderately radiogenic '*'0s/'®*0s, and positive TITAN
anomalies observed in the highest *He/*He OIB lavas can be generated by mixing
refractory eclogite and the asthenospheric DMM peridotite that were subducted together
(in the same plate) at 3 Ga. When the proportion of refractory eclogite in the mixture is
between 20 and 25%, the model generates *He/*He, '*’0s/'**Os and positive TITAN
anomalies that are similar to the highest *He/*He OIB lavas (Fig. 2). If the proportion of
refractory eclogite is increased, the present-day *He/*He in the resulting mixture is
diminished and the positive TITAN anomalies and '*’Os/'®Os ratios are both increased

to values above those observed in high *He/*He OIB lavas.

120



Fig. 4 shows that the addition of 20% eclogite to a 3 Ga DMM composition
generates a hybrid eclogite-peridotite spidergram that is similar in shape to the
spidergram of the highest *He/*He lava from Iceland. (Sr is a poor fit, however, due to
the positive Sr anomalies in the Icelandic lava, a possible result of interaction with
shallow lithospheric gabbros [Gurenko and Sobolev, 2006]). This hybrid spidergram
may thus serve as a plausible melt source for the high *He/*He lava. It is important to
note that the TITAN elements are “bracketed” by elements of similar compatibility (as
long as rutile is absent) in the spidergram, and these bracketing elements are used to
calculate the TITAN anomalies. Thus, the magnitude of TITAN anomalies are little
affected by partial melting beneath a hotspot, and the positive TITAN anomalies in the
mantle source of high *He/*He lavas are reflected in the erupted hotspot lavas. Clearly,
this assumes that the rutile present in the downgoing slab is no longer present in the high
’He/*He mantle that melts beneath hotspots. One way to destabilize rutile is to
completely mix the (smaller proportion of) eclogite and the (larger proportion of)
peridotite in the ancient recycled slab. Alternatively, if eclogite is still present in the
source of the high *He/*He OIB mantle source, it must be melted to a sufficiently high
degree to eliminate rutile as a phase in the residue of melting (Gaetani et al., 2007).

This model for the generation of high *He/*He, TITAN-enriched mantle can also
generate a low *He/*He that has positive TITAN anomalies. Subduction is a continuous
process that has operated for much of geologic time, and the ’He/*He ratio of the upper
mantle has likely decreased significantly (Fig. 3). Thus, the peridotite portion of more
recently subducted oceanic plates will trap and preserve a lower *He/*He upper mantle
signature than ancient subducted plates, and the refractory eclogite portion of recently
subducted plates will also host positive TITAN anomalies. For example, the lower
*He/*He, TITAN-enriched mantle source sampled by Cape Verde lavas can be generated
by mixing refractory eclogite (10-30% by mass) and asthenospheric DMM components
of a plate subducted between 1-2 Ga (Fig. 2).

The “wedge-shaped” outline of the OIB data in Fig. 2 highlights a striking
absence of high *He/*He lavas with negative (or even small positive) TITAN anomalies.

Why do all high *He/*He lavas exhibit TITAN-enrichment, or rather, why have high
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‘He/'He-TITAN depleted (or only mildly TITAN enriched) lavas not been found?
Continental crust and arc lavas (and associated sediments) compose the only known
reservoir to exhibit TITAN depletion. Due to its extremely high U and Th contents,
admixture of CC with high *He/*He peridotite may not be conducive to the preservation
of high *He/*He (Jackson et al., 2007b), and could explain why TITAN-depleted lavas
always exhibit low *He/*He (Fig. 2). OIB lavas lacking TITAN anomalies may host an
eclogite component that was not U and Th-depleted (and thus did not acquire positive
TITAN anomalies) in a subduction zone, and may also produce significant ‘He.

On the other hand, the absence of high *He/*He lavas with flat (or even slightly
positive) TITAN anomalies may be explained by the intimate spatial and temporal
association between the TITAN-enriched eclogites and high *He/*He peridotites
suggested by this model: The peridotite and refractory eclogite components—the raw
materials for the formation of the high *He/*He, TITAN-enriched mantle—are always
together in subducting plates, and it may not be possible to melt pure high *He/*He
peridotite without also melting some eclogite. This will be true particularly if subducted
slabs are stretched, thinned and folded in the dynamic mantle (Allegre and Turcotte,
1986), such that the diminished thickness of the (eclogite and peridotite) slab is less than
the width of melting zones beneath hotspots. Such a process might explain why an
eclogite signature (positive TITAN anomalies and radiogenic '*’Os/'®0s) is invariably

present in high *He/*He lavas.

3.6. Two alternative models for a hybrid high *He/*He mantle: “Eclogite
Injection” and diffusion of “Ghost” primordial helium.

An alternative process for generating the hybrid eclogite-peridotite high *He/*He
mantle assumes that subducted slab peridotite contributes little to the helium budget of
the high *He/*He mantle sampled by OIBs. In this model, the refractory slab eclogite
penetrates into the lower mantle and mixes with a hypothetical lower mantle high
*He/'He peridotite reservoir (i.e., not associated with the peridotite portion of slabs). The
hybrid mixture then rises in a plume where it is melted beneath a hotspot. By comparison

to the slab peridotite-eclogite “package” model describe in section 3.4 and 3.5 above, this
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alternative “eclogite injection” model does not guarantee an intimate spatial and temporal
association of the high *He/*He peridotite and TITAN-enriched eclogite components. For
example, deep mantle high *He/*He peridotite could upwell in a plume without first being
inoculated with refractory eclogite, in which case the erupted high *He/*He lavas would
lack positive TITAN anomalies. Such lavas have not been observed. While this model is
not explored further here, one possible solution could be that, due to mixing by stretching
and thinning of slabs in a convecting mantle over geologic time (Allegre and Turcotte,
1986), recycled eclogite has become pervasive in the mantle and is distributed at
lengthscales smaller than the melting zones beneath hotspot volcanoes. In this way,
volcanoes fed by upwelling high *He/*He mantle plumes will inevitably sample
subducted eclogite.

Instead of mechanically mixing the high *He/*He peridotite and TITAN-enriched
eclogite, as suggested in the “slab package” and “eclogite injection” models above, it
may be possible to diffusively mix helium from a high *He/*He peridotite into a
degassed, U and Th-poor pyroxenite (i.e., refractory eclogite) (Albarede and Kaneoka,
2007). Due to the higher diffusivity of helium compared to non-volatile major and trace
elements, helium isotopes may become decoupled from other lithophile isotope tracers
(Hart et al., 2007), and primordial helium may become associated with recycled materials
like refractory eclogites (Albarede and Kaneoka, 2007). Albarede and Kaneoka (2007)
propose that helium from deep (high *He/*He) mantle peridotites can diffuse into
embedded, tightly folded layers of stretched and thinned refractory eclogite. They
suggest that changing the duration of the diffusion process, as well as the U and Th
contents of the refractory eclogite layers, can generate mantle sources for both high and
low *He/*He hotspots. U and Th-poor refractory eclogite that was processed in
subduction zones will have positive TITAN anomalies (McDonough, 1991), and because
such eclogites will produce little *He over time, they are perfect “containers” for
preserving diffusively acquired high *He/*He signatures. If these eclogites become
sufficiently thinned (to <1-2 km thickness, by mantle mixing), they could acquire high
He/*He signatures by diffusion from the ambient deep mantle peridotite (Hart et al.,
2007). Thus, the “ghost” helium model of Albarede and Kaneoka (2007) may offer a
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resolution to the paradoxical association of high *He/*He signatures in lavas with strong
eclogite signatures.

Nonetheless, the “ghost helium” model suffers from the same spatial and temporal
issues as the “eclogite injection” model: There is no obvious mechanism preventing
ambient lower mantle (eclogite-free) peridotite from upwelling and melting beneath a
hotspot, thus generating a high *He/*He lava that lacks positive TITAN anomalies.
However, one possible resolution is that plume-entrained, high *He/*He lower mantle
peridotites are too refractory to contribute significantly to melting beneath OIBs (i.e.,
Albarede and Kaneoka [2007] invoke dunites and harzburgites), so that pure peridotites
are never melted. Alternatively, if eclogite layers are pervasive in the mantle at
lengthscales smaller than those sampled by melting zones (<100 km), it may be
inescapable that eclogites always contribute to mantle melts. An additional problem with
the “ghost helium” model is that rutile may still be stable in a pure eclogite mantle
component that is upwelling beneath a hotspot; the residual rutile will hold back TITAN
in the source, and as a result, positive TITAN anomalies will not be observed in the
erupted lavas. However, if the eclogite is melted to sufficiently high degrees beneath a

hotspot, the rutile will be completely consumed and not present in the residue (Gaetani et

al., 2007).

3.7. High *He/*He lavas without positive TITAN anomalies?

If a high *He/*He peridotite could be melted in pure (no eclogite) form, there
would be no positive TITAN-anomalies in the erupted lavas. There would also be no
contribution of *He ingrowth from the eclogite, and an even higher *He/'He might be
expected in the melts of such a mantle source. Such lavas have not been identified.
However, with the highest magmatic ’He/*He values on record, Baffin Island lavas

(Stuart et al., 2003) may provide an important test case for this hypothesis.

3.8. TITAN anomalies due to partitioning between lower mantle phases?

It 1s difficult to rule out the possibility of TITAN fractionation in lower mantle

materials. Experimental studies of high pressure partitioning and mineralogy are in the
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early phases. However,Ca-perovskite in peridotitic and basaltic systems shows negative
Ti and Nb partitioning patterns compared to Th, U and the rare earth elements (REEs)
(Hirose et al., 2004). This means that a Ca-perovskite bearing solid assemblage would
have negative anomalies, but melt equilibrated with Ca-perovskite could have positive
anomalies. It if it possible to generate Ca-perovskite melts at the appropriate pressures
and temperatures (for example, D’’), and extract them from the lower mantle (the
inferred home of the high *He/*He domain), then Ca-perovskite melting in the lower
mantle may offer a potential explanation for the origin of TITAN-enriched, high *He/*He

lavas.

4. The high ‘He/'He, TITAN-enriched mantle: A reservoir for the

“missing” TITAN elements in the earth?

In addition to offering insights into the composition and generation of the high
*He/*He mantle reservoir, TITAN-enrichment in high *He/*He OIBs may provide
information about the location and composition of the reservoir hosting the earth’s
missing TITAN elements. If the refractory lithophile trace elements have chondritic
abundances in BSE (bulk silicate earth), mass balance constraints require that the TITAN
elements missing in the shallow earth reservoirs—DMM and CC—must exist in the
deeper earth (McDonough, 1991; Rudnick et al., 2000), perhaps in a deep reservoir
composed of subducted oceanic plates (Christensen and Hofmann, 1994). In this section,
we calculate the trace element budget of a hypothetical missing TITAN-rich reservoir
that, when added together with DMM and CC, generates a BSE (McDonough and Sun,
1995) spidergram. We show that, like high *He/*He OIB lavas, the spidergram of the
TITAN-rich reservoir has positive TITAN anomalies.

In order to estimate the trace element composition of this deep, TITAN-enriched
reservoir, we assume that the composition of BSE can be approximated with just three
reservoirs: CC, DMM and subducted plates (here called PLATE, which is composed of
oceanic crust, mantle lithosphere, and everything else--like sediment--subducted along
with downgoing plates). The trace element budget of the PLATE reservoir is calculated

using the following mass balance relationship:
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[X]ce * Mcc+ [x]omm X Mpmm + [X]pLaTe X MprLate = [X]Bse X Mpse  (eq. 1)

where [x] represents the concentration of the element x in the four reservoirs, and M is
the mass of the reservoirs. Assuming the mass of CC is fixed at 0.6% of BSE, and given
that the mass proportions of the DMM and PLATE reservoirs are unknown, the following
relationships are used to calculate possible trace element budgets for the PLATE

reservoir:

Mcc = 0.006 x Masg (eq. 2)
MpLaTe = P (eq. 3)
MDMM =0.994 — B (eq. 4)

where the mass of the three reservoirs, PLATE, CC, and DMM sum to the mass of the
total silicate mantle. Employing the trace element budgets previously derived for CC
(Rudnick and Gao, 2003), DMM (Workman and Hart, 2005) and BSE (McDonough and
Sun, 1995), the trace element budget of the subducted PLATE reservoir is calculated for
different values of Mppate (B). The results of the mass balance model are plotted in Fig.
5 (assuming that B > 0.4). The calculated PLATE spidergram changes as a function of its
mass proportion () of BSE. For large values of B, the PLATE reservoir is more trace
element depleted, and for smaller values of 3, the PLATE reservoir is increasingly trace
element enriched. The most important observation is that, regardless of the value of f3,
the PLATE reservoir exhibits positive TITAN anomalies.

It is possible to place constraints on the minimum size of the subducted PLATE
reservoir and show that its mass proportion of BSE is unlikely to be small. Following
Rudnick et al. (2000), we assume that the present mass of the oceanic crust (5.3x10' kg)
has been subducted every 100 Ma for the past 2.5 Ga, and the total mass of the reservoir
comprised of subducted oceanic crust is 1.3x10> kg. Assuming that the portion of the
subducted oceanic plate that is oceanic mantle lithosphere is 10 times thicker and 10%

denser than the oceanic crustal lithosphere, then the total mass of oceanic plates
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subducted over the past 2.5 Ga is ~1.4x10%* kg (~8% of which is oceanic crust), which is
~40% of the mass of BSE. We consider this a minimum estimate for the size of the
subducted PLATE reservoir, as subduction probably operated before 2.5 Ga, and the
Archaen mantle was hotter, thereby leading to higher rates of plate formation and
subduction (Rudnick et al., 2000). Thus, the PLATE reservoir composes >40% of BSE,
and all possible spidergrams for the plate reservoir are more depleted than the PLATE
spidergram shown in Fig. 5.

Therefore, mass balance considerations (equations 1-4) and estimates of plate
recycling budgets suggest that a large mantle reservoir host for the missing TITAN
elements. The spidergram of the calculated PLATE reservoir exhibits hints of the
positive TITAN-anomalies observed in high *He/*He OIBs. Thus, it is not implausible
that high *He/*He lavas are sampling the “missing” TITAN hosted in the PLATE
reservoir.

While there are many similarities, there is some disagreement between the shape
of the spidergrams of the calculated PLATE reservoir and the high *He/*He OIB lavas.
Most significantly, the positive TITAN anomalies in the PLATE reservoir are not as large
as those observed in the high *He/*He lavas from Hawaii, Iceland, Galapagos and Samoa.
One solution to this discrepancy is the following: The PLATE reservoir is likely to be
heterogeneous, as it includes everything in BSE that is not DMM or CC. These other
components in the PLATE reservoir will dilute the large, positive TITAN-anomalies
contributed from recycled, rutile-bearing eclogites. While the PLATE reservoir is not
purely a high *He/*He reservoir, its spidergram balances the Earth’s budget of TITAN,
and recycled, refractory, rutile-bearing eclogite likely contributes the positive TITAN
anomalies to the PLATE reservoir (McDonough, 1991). It is this TITAN-enriched
domain of the PLATE reservoir that may be associated with the source for high *He/*He
lavas.

In section 3.5 it was shown that, if mixed with high *He/*He peridotite,
approximately 20 to 25% refractory, rutile-bearing eclogite can generate the *He/*He,
'""0s/'*0s and TITAN anomalies in high *He/*He OIBs. However, this percentage of

eclogite greatly exceeds the percentage of eclogite in the PLATE reservoir (~8%).
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Perhaps this inconsistency can be explained by the fact that eclogites have lower solidus
temperatures than pure, unadulterated peridotites. Thus, when melting the high *He/*He
portion of the PLATE reservoir beneath a hotspot, the eclogite’s (be it pure eclogite or

eclogite completely mixed into a peridotite) contribution to the melt will exceed its mass

proportion in the mantle source.

5. Implications for '*Nd/"**Nd measurements on terrestrial mantle

rocks

A recent discovery demonstrated that the '**Nd/'**Nd ratios in all measured
terrestrial mantle rocks are 20 ppm higher than chondrite (Boyet and Carlson, 2005,
2006), indicating that these rocks were derived from a reservoir that had superchronditic
Sm/Nd during the lifetime of '**Sm (the first few hundred million years following
accretion). If the BSE has chondritic abundances of the refractory elements, then the
superchondritic "**Nd/'*Nd ratios observed in the accessible terrestrial rocks suggest that
they sample the depleted residue (early depleted reservoir, or EDR) of an early
differentiation event. In this model, a complementary hidden “early enriched reservoir”
(EER) with subchondritic "**Nd/'"**Nd must exist in the deep earth (Boyet and Carlson,
2005, 2006; Andreasen and Sharma, 2006; Carlson et al., 2007). Alternatively, if BSE
accreted from non-chondritic materials, an early differentiation of the silicate earth is not
required (Caro et al., 2007).

If the earth accreted from non-chondritic materials, the superchondritic
"2Nd/"**Nd ratios in the terrestrial mantle could be a result of superchondritic
TSm/"*Nd (> 0.209) ratios in BSE (Boyet and Carlson, 2006). However, a non-
chondritic earth does not necessarily obviate the need for a deep, TITAN-enriched SLAB
reservoir, because we see evidence for its presence in high *He/*He OIBs.

Alternatively, if BSE does have chondritic abundances of the refractory elements,
neither of the two early formed reservoirs—EDR and EER—have the appropriate
isotopic and trace element characteristics to be the mantle source of high *He/*He lavas.

The EDR was suggested to be the high *He/*He reservoir variously called FOZO, PHEM
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or C (Boyet and Carlson, 2006). While the EDR does have higher '“Nd/"**Nd than
chondrite, consistent with globally high (superchondritic) '**Nd/'**Nd ratios in high
’He/*He lavas (Jackson et al., 2007a), the EDR is calculated to have negative TITAN
anomalies (Boyet and Carlson, 2005) and is not consistent with being the mantle source
of TITAN-enriched, high *He/*He OIB lavas. By contrast, the EER does have positive
TITAN anomalies like those observed in high *He/*He OIB lavas. An early crust isolated
at the bottom of the mantle has been suggested to host high *He/*He ratios (Tolstikhin
and Hofmann, 2005). However, the EER cannot be the mantle source of the high
*He/*He as it has Sm/Nd ratios lower (more enriched) than chondrite, and will generate
lower '*Nd/'**Nd ratios than observed in high *He/*He OIBs. Thus, neither of the two
initial reservoirs suggested by Boyet and Carlson (2005) describe both the isotopic and
trace element characteristic of the high *He/*He OIB mantle. The depleted peridotite and
refractory, rutile-bearing eclogite in ancient plates that were subducted and stored in the

mantle are ideally suited to be a mantle source for high *He/*He OIB lavas.

6. The fate of slabs and the high *He/*He reservoir

The presence of recycled eclogites in the mantle source of high *He/*He lavas has
important implications for the helium isotope evolution of the mantle, since subduction
zone processing likely plays an important role in determining the composition of recycled
eclogites. Specifically, the uniqueness of the thermal regimes of different subduction
zones may affect the composition of eclogites in dramatically different ways. Slab
melting and dehydration in ancient, hot subduction zones may residually enrich the slab
in TITAN elements while depleting it in U and Th, a process that is conducive to the
formation and preservation of a high *He/*He, TITAN-enriched mantle reservoir.
Alternatively, cooler subduction zones may not generate TITAN anomalies (or deplete
the *He -producing elements, U and Th) in the slab, a scenario that may produce mantle
reservoirs with small positive TITAN anomalies and low *He/*He. Thus, the fate of the
*He/*He evolution of the various mantle reservoirs may hinge on the processes operating

in subduction zones.

129



Appendix A: *He/*He, "*’Os/"®*Os and trace element data compilation.
*He/*He, '*70s/'®0s and trace element data for representative OIB samples

(plotted in fig. 2) are from the GEOROC database (http://georoc.mpch-mainz.gwdg.de/),

from the helium database of Abedini et al. (2006), and from the literature. Some of the
*He/*He and "*’0s/'**Os data from Iceland are unpublished, as are '*’0s/"**Os data for
Samoan samples with *He/*He >20 Ra (the protocol’s for measuring '*’Os/'**Os are the
same as Skovgaard et al. [2001] for the unpublished Icelandic data and Workman et al.
[2004] for the unpublished Samoan data). The *He/'He data from OIBs (plotted in Fig.
2) were obtained by both crushing and fusion of olivine, clinopyroxene and glass, and are
not filtered based on helium concentrations. However, samples suggested to have
suffered shallow contamination by crust (e.g., several samples in Macpherson et al.,
2005) were not included. Additionally, very evolved rocks (MgO<5.3 wt.%) were
excluded, so as to preclude the effects of extensive fractional crystallization on the
various trace element ratios (e.g., Ti/Ti* and Nb/Nb*). Using Ba/Rb as a filter for
alteration, samples with high ratios (Ba/Rb > 25) were not considered. Only trace
element (Th, La, Sm, Tb) data measured by ICP-MS and neutron activation are included,

thereby eliminating samples with low-precision trace element measurements.

Appendix B: Helium isotope model.

The precise timing of the genesis of the high *He/*He reservoirs cannot be
calculated using helium isotopes because the degassing history of the DMM reservoir, the
initial *He/’He and *He abundance of a (hypothetical) undegassed mantle (and DMM),
and the present-day *He abundance in DMM are not well known. Thus, the age of the
reservoir (3 Ga), as sampled by the high *He/*He lava from Iceland (sample SEL 97, see
Table 1), is poorly constrained. For example, in the model presented in Section 3.5
above, a present-day undegassed mantle ***U/*He ratio of 70 was assumed (Table 2).
However, if the initial 28U/°He ratio of the mantle is increased to a value of ~250, then
our model can generate the TITAN anomalies, '*’Os/'**Os and *He/*He of the mantle
sampled by the Icelandic lava by subducting and isolating a plate at 4 Ga (in this case, the

amount of eclogite required to generate the high *He/*He, '¥'0s/'**Os and positive
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TITAN anomalies in this older, high *He/*He mantle reservoir increases slightly). In
order to generate a TITAN-enriched, high ’He/*He mantle at 2 Ga, unrealistically low
28U/°He ratios (***U/°He < 10) are required.

Our preferred model for the time evolution of *He/*He in DMM and primitive
mantle are as follows. If an initial **U/*He and *He/*He of the undegassed mantle are
assumed (see Table 2 for assumed values), and if DMM was formed by continuous
depletion by extraction of oceanic and continental crust from a chondritic primitive
mantle over Earth’s history, the known *He/*He of present day DMM (8 Ra) can be used
to calculate the present-day 2**U/’He of DMM. Thus, assuming that the continuous
transport equations (Allegre, 1969; Hart and Brooks, 1970; Workman and Hart, 2005)
accurately model the continuously depleting upper mantle (DMM), the 28U/ He and
‘He/*He of DMM can then be calculated at any time from 4.4 Ga to the present day (see
Table 2 for list of these values for DMM at different times in earth’s history). The
helium isotope evolution of the continuously depleting DMM reservoir (shown in Fig. 3)

is modeled using the following continuous transport equations:

‘He/*Hei= “He/*Her +
8A238/(Mag+kazg) ( U He)r(1-exp(- 1(T-t) Aasg+ kazg))) +
Thass/(Asstkazs)( 2 UPHe)r(1-exp(-1(T-t)(Aasst kass))) +

6ha32/(AasaHan)(*Th/ He)r(1-exp(- 1(T-t) Aaso+ kaz2))) (eq. 5)
where

k235 = -11n((*®UPHe)o/(P* U/ He)r)/(T-t) - Aass; (eq. 6)
ka3s = -11In((3°UPHe)o/(*°UHe)r)/(T-t) - Aass; (eq. 7)
ko2 = -11In((**Th/He)o/(P*Th/He)r)/(T-t) - Az32 (eq. 8)

where Ay35(1.55x10"°y™"), Aa35(9.85x107"°y™") and A3, (4.95x10" y™') are the decay
constants for » 8U, 22 U, and 232Th, respectively, and kasg, ka3s and ko3; are the continuous
transport coefficients for the U-Th-He system in DMM. The k-value is the difference in
transport coefficients for U (or Th) and He, and is related to the difference in bulk
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partition coefficients between U (or Th) and He; negative k-values in the model indicate
that He is transported from the mantle more efficiently than U and Th.

When kj35235232 equals zero, equations 5-8 describe closed-system *He/*He
evolution. It is assumed that the undegassed mantle has been closed to degassing since
4.4 Ga. Thus, the closed-system model starts at time T=4.4 Ga, where “t” is the time
before present day (and T-t equals elapsed time). The *“He/*Her (initial ratio) of primitive
mantle is unconstrained, but is assumed to be 5,995 (or 120 Ra) and is assumed to
increase to 7,224 (or ~100 Ra) today. The ***Th/***U, (present-day) ratio of primitive
mantle is assumed to be 4.05 (McDonough and Sun, 1995). The primitive mantle
28U/ He, (present-day) ratio is then 70. From the **U/*Hey ratio, the *He can be
calculated by employing a present-day primitive mantle U concentration of 0.0203 ppm
(McDonough and Sun, 1995), and is 7.3x10"" atoms/g.

The model for the *He/*He and ***U/*He of DMM starts at time T=4.4 Ga. It is
assumed that DMM and primitive mantle had the same composition (‘He/*Her, >**U/’Her
and **Th/**Ur) at 4.4 Ga, and that DMM began forming immediately by melt extraction
from primitive mantle starting at 4.4 Ga. It is further assumed that DMM has evolved to
exhibit present-day 232Th/238Uo and 4He/3Heo values of 2.55 (similar to the value for
average DMM in Workman and Hart [2005]) and ~89,900 (8 Ra), respectively.
Equations 5 through 8 are then solved for **U/*He,, which is calculated to be ~54,000.
For this solution, ki35 and ka5 are both -1.51x10” y'I and kys, is -1.41x107 y“. If a DMM
U concentration of 0.0032 ppm is assumed (Workman and Hart, 2005), the *He of
present-day DMM is calculated to be 1.5x10" atoms/g.

The *He abundance in DMM calculated with the continuous depletion model is
within a factor of 3 to 20 of the *He abundances inferred from MORB samples and *He
flux from ridges (see Ballentine et al. [2002] for summary). Assuming 10% melting of
the mantle source, *He concentrations for DMM were derived from CO, concentrations
and canonical mantle CO,/°He ratios in MORB melt inclusions (4.52x10* £1.93 atoms
. He/g (Saal et al., 2002), “popping” rock (>2.69x10° atoms *He /g [Moreira et al., 1998]),
and flux of *He out of mid-ocean ridges (1.18x10” atoms *He /g [Farley et al., 1995;
Ballentine et al., 2002]).
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The increase in ***U/°He in DMM over the age of the earth (Table 2) requires that
He is less compatible than U and Th during melting of this mantle reservoir. However,
the assumption of increased ***U/*He in DMM over time is realistic given the lherzolitic
lithology of DMM, a mantle reservoir that hosts an estimated cpx modal abundance of
~13% (Workman et al., 2005). Results from a recent helium partitioning study (Heber et
al., 2007) are consistent with helium being less compatible than U and Th (assuming U
and Th partition coefficients from a recent compilation [Kelemen et al., 2003]) during
mantle melting of a lherzolite lithology. However, helium partitioning during mantle
melting is a controversial subject. Parman et al. (2005) reported olivine-melt partition
coefficients for helium suggesting that helium may be more compatible than U and Th
during melting of a cpx-poor lherzolite or harzburgite. However, Heber et al. (2007)
report values that are over an order of magnitude smaller (less compatible), suggesting
the helium may be more compatible than U and Th only when melting cpx-poor
harzburgites or dunites. The discrepancy in olivine-melt helium partition coefficients
between these two studies is not yet resolved.

Finally, the continuous transport equations can be written to calculate the
concentrations of any element in DMM at any time in earth’s history, assuming that

DMM formed by continuous depletion of BSE starting at 4.4 Ga:

Xpmm, = Xeseo(exp(-1(ax)[T-t])) (eq. 9)
where
ax = -1In(Xpmm,o/Xssg,0)/(T) (eq. 10)

where oy 1s proportional to the transport of element X out of DMM over time; Xgsg o and
Xbmm,o are the present-day concentrations of element X in BSE and DMM, respectively;

“t”

is time before the present day and T = 4.4 Ga, and Xpwmwm, is the concentration of

“t”

element X in DMM at any time “t” before the present day. Using equations 9 and 10,
concentrations of trace elements that are known in BSE and present-day DMM can be
used to calculate their time-dependent concentrations in DMM. For example, the

present-day Ti concentrations in DMM (716 ppm) and BSE (1205 ppm) yield an ar; value
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of 1.18x107"° y’1 in equation 10. Thus, using this or; value and solving for Tipwmm, in
equation 10, the concentration of Ti in DMM can be calculated at any time in earth’s
history. More incompatible elements have larger values for a. For example,
aTh=5.25><10"0 y‘] and ay=4.20x10"° y", where Th is more incompatible than U. In
Table 2, the abundances of several trace elements in DMM are provided at various times

in earth’s history.
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Figure 1. Titanium, tantalum and
niobium (TITAN) are highly enriched
in ocean island basalts (OIBs) with
high *He/*He. Top panel: Primitive
mantle (PM) normalized trace
element data (spidergrams) for basalts
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